On the choice of local element frame for corotational triangular shell elements

被引:27
|
作者
Battini, JM [1 ]
Pacoste, C
机构
[1] Royal Inst Technol, KTH, Dept Mech, SE-10044 Stockholm, Sweden
[2] Swedish Natl Rd Adm Consulting Serv, SE-17104 Solna, Sweden
来源
关键词
corotational formulation; shell finite elements;
D O I
10.1002/cnm.710
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the context of corotational triangular shell elements, the objective of this paper is to show that for certain stability problems it is interesting to choose a local element frame invariant to the element node ordering. Two methods of obtaining such a local frame are presented. These two methods, already proposed by other authors, are reformulated. For the first one, based on the minimisation of local nodal displacements, it is shown that the iterative process can be avoided. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:819 / 825
页数:7
相关论文
共 50 条
  • [21] SIMPLE TRIANGULAR CURVED SHELL ELEMENT.
    Stolarski, H.
    Belytschko, T.
    Carpenter, N.
    Kennedy, J.M.
    Engineering computations, 1984, 1 (03) : 210 - 218
  • [22] Flat triangular shell element with loof nodes
    Technical Univ of Denmark, Lyngby, Denmark
    Int J Numer Methods Eng, 22 (3867-3887):
  • [23] A triangular six-node shell element
    Kim, Do-Nyun
    Bathe, Klaus-Juergen
    COMPUTERS & STRUCTURES, 2009, 87 (23-24) : 1451 - 1460
  • [24] SIMPLE FLAT TRIANGULAR SHELL ELEMENT REVISITED
    OLSON, MD
    BEARDEN, TW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1979, 14 (01) : 51 - 68
  • [25] A triangular shell element for geometrically nonlinear analysis
    M. Rezaiee-Pajand
    E. Arabi
    Amir R. Masoodi
    Acta Mechanica, 2018, 229 : 323 - 342
  • [26] A DOUBLY CURVED ISOPARAMETRIC TRIANGULAR SHELL ELEMENT
    MOHR, G
    COMPUTERS & STRUCTURES, 1981, 14 (1-2) : 9 - 13
  • [27] A triangular shell element for geometrically nonlinear analysis
    Rezaiee-Pajand, M.
    Arabi, E.
    Masoodi, Amir R.
    ACTA MECHANICA, 2018, 229 (01) : 323 - 342
  • [28] A flat triangular shell element with Loof nodes
    Poulsen, PN
    Damkilde, L
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (22) : 3867 - 3887
  • [29] Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns
    Lee, Phill-Seung
    Noh, Hyuk-Chun
    Bathe, Klaus-Jurgen
    COMPUTERS & STRUCTURES, 2007, 85 (7-8) : 404 - 418
  • [30] A triangular finite shell element based on a fully nonlinear shell formulation
    Campello, EMB
    Pimenta, PM
    Wriggers, P
    COMPUTATIONAL MECHANICS, 2003, 31 (06) : 505 - 518