Computation and application of robust data-driven bandwidth selection for gradient function estimation

被引:4
|
作者
Xie, Qichang [1 ]
Sun, Qiankun [1 ]
机构
[1] Shandong Technol & Business Univ, Dept Finance, Yantai, Shandong, Peoples R China
关键词
Bandwidth selection; Composite quantile regression; Gradient estimation; Local polynomial fitting; COMPOSITE QUANTILE REGRESSION; DERIVATIVES; EFFICIENT; CHOICE;
D O I
10.1016/j.amc.2019.05.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The significance of gradient estimates in nonparametric regression cannot be neglected as it is a critical process for executing marginal effect in empirical application. However, the performance of resulting estimates is closely related to the selection of smoothing parameters. The existing methods of parameter choice are either too complicated or not robust enough. For improving the computational efficiency and robustness, a data-driven bandwidth selection procedure is proposed in this paper to compute the gradient of unknown function based on local linear composite quantile regression. Such bandwidth selection method can solve the difficulty of the infeasible selection program that requires the direct observation of true gradient. Moreover, the leading bias and variance of the estimated gradient are obtained under certain regular conditions. It is shown that the bandwidth selection method processes the oracle property in the sense that the selected bandwidth is asymptotically equivalent to the optimal bandwidth if the true gradient is known. Monte Carlo simulations and a real example are conducted to demonstrate the finite sample properties of the suggested method. Both simulation and application corroborate that our technique delivers more effective and robust derivative estimator than some existing approaches. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 293
页数:20
相关论文
共 50 条
  • [31] Robust state estimation for wireless sensor networks with data-driven communication
    Liu, Huabo
    Wang, Dongqing
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (18) : 4622 - 4632
  • [32] Data-driven and uncertainty-aware robust airstrip surface estimation
    Francesco Crocetti
    Mario Luca Fravolini
    Gabriele Costante
    Paolo Valigi
    [J]. Neural Computing and Applications, 2023, 35 : 19565 - 19580
  • [33] Data-Driven Calibration Estimation for Robust Remote Pulse-Oximetry
    van Gastel, Mark
    Verkruysse, Wim
    de Haan, Gerard
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (18):
  • [34] Robust estimation of clinch joint characteristics based on data-driven methods
    Zirngibl, Christoph
    Schleich, Benjamin
    Wartzack, Sandro
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 124 (3-4): : 833 - 845
  • [35] Data-driven Site Selection
    Schuh G.
    Gützlaff A.
    Adlon T.
    Schupp S.
    Endrikat M.
    Schlosser T.X.
    [J]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117 (05): : 258 - 263
  • [36] Robust Data-Driven Fault Detection: An Application to Aircraft Air Data Sensors
    Zhao, Yunmei
    Zhao, Hang
    Ai, Jianliang
    Dong, Yiqun
    [J]. INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2022, 2022
  • [37] MULTIVARIATE DATA-DRIVEN K-NN FUNCTION ESTIMATION
    BHATTACHARYA, PK
    MACK, YP
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 35 (01) : 1 - 11
  • [38] Data-driven selection and parameter estimation for DNA methylation mathematical models
    Larson, Karen
    Zagkos, Loukas
    Mc Auley, Mark
    Roberts, Jason
    Kavallaris, Nikos, I
    Matzavinos, Anastasios
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2019, 467 : 87 - 99
  • [39] Data-Driven Bandwidth Selection for Recursive Kernel Density Estimators Under Double Truncation
    Yousri Slaoui
    [J]. Sankhya B, 2018, 80 (2) : 341 - 368
  • [40] Data-Driven Covariance Estimation
    Rogers, John T., II
    Ball, John E.
    Gurbuz, Ali C.
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS & TECHNOLOGY (PAST), 2022,