TWO-DIMENSIONAL VOLUME-FROZEN PERCOLATION: EXCEPTIONAL SCALES

被引:7
|
作者
van den Berg, Jacob [1 ]
Nolin, Pierre [2 ]
机构
[1] CWI, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[2] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 01期
关键词
Frozen percolation; near-critical percolation; sol-gel transitions; BROWNIAN INTERSECTION EXPONENTS; SQUARE LATTICE; PLANE; CLUSTERS; VALUES;
D O I
10.1214/16-AAP1198
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a percolation model on the square lattice, where clusters "freeze" (stop growing) as soon as their volume (i.e., the number of sites they contain) gets larger than N, the parameter of the model. A model where clusters freeze when they reach diameter at least N was studied in van den Berg, de Lima and Nolin [Random Structures Algorithms 40 (2012) 220-226] and Kiss [Probab. Theory Related Fields 163 (2015) 713-768]. Using volume as a way to measure the size of a cluster instead of diameter leads, for large N, to a quite different behavior (contrary to what happens on the binary tree van den Berg, de Lima and Nolin (2012), where the volume model and the diameter model are "asymptotically the same"). In particular, we show the existence of a sequence of "exceptional" length scales.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [41] Scaling Relations for Two-Dimensional Ising Percolation
    Higuchi, Yasunari
    Takei, Masato
    Zhang, Yu
    JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (05) : 777 - 799
  • [42] Arm Events in Two-Dimensional Invasion Percolation
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (05) : 1321 - 1352
  • [43] Nested closed paths in two-dimensional percolation
    Song, Yu-Feng
    Tan, Xiao-Jun
    Zhang, Xin-Hang
    Jacobsen, Jesper Lykke
    Nienhuis, Bernard
    Deng, Youjin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (20)
  • [44] PERCOLATION OF THE TWO-DIMENSIONAL ISING-MODEL
    HIGUCHI, Y
    LECTURE NOTES IN MATHEMATICS, 1987, 1250 : 120 - 127
  • [45] NOTE ON THE SUSCEPTIBILITY EXPONENT FOR TWO-DIMENSIONAL PERCOLATION
    PRIVMAN, V
    VAGNER, ID
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1983, 50 (04): : 353 - 355
  • [46] EXTREME PATHS IN ORIENTED TWO-DIMENSIONAL PERCOLATION
    Andjel, E. D.
    Gray, L. F.
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 369 - 380
  • [47] Universality of amplitude combinations in two-dimensional percolation
    Daboul, D
    Aharony, A
    Stauffer, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (06): : 1113 - 1137
  • [48] DELOCALIZATION TRANSITION IN TWO-DIMENSIONAL QUANTUM PERCOLATION
    MEIR, Y
    AHARONY, A
    HARRIS, AB
    EUROPHYSICS LETTERS, 1989, 10 (03): : 275 - 278
  • [49] Universal amplitude ratio Γ-/Γ+ for two-dimensional percolation
    Jensen, Iwan
    Ziff, Robert M.
    PHYSICAL REVIEW E, 2006, 74 (02):
  • [50] Two-dimensional polymer networks near percolation
    Wu, Yong
    Schmittmann, B.
    Zia, R. K. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)