TWO-DIMENSIONAL VOLUME-FROZEN PERCOLATION: EXCEPTIONAL SCALES

被引:7
|
作者
van den Berg, Jacob [1 ]
Nolin, Pierre [2 ]
机构
[1] CWI, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[2] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 01期
关键词
Frozen percolation; near-critical percolation; sol-gel transitions; BROWNIAN INTERSECTION EXPONENTS; SQUARE LATTICE; PLANE; CLUSTERS; VALUES;
D O I
10.1214/16-AAP1198
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a percolation model on the square lattice, where clusters "freeze" (stop growing) as soon as their volume (i.e., the number of sites they contain) gets larger than N, the parameter of the model. A model where clusters freeze when they reach diameter at least N was studied in van den Berg, de Lima and Nolin [Random Structures Algorithms 40 (2012) 220-226] and Kiss [Probab. Theory Related Fields 163 (2015) 713-768]. Using volume as a way to measure the size of a cluster instead of diameter leads, for large N, to a quite different behavior (contrary to what happens on the binary tree van den Berg, de Lima and Nolin (2012), where the volume model and the diameter model are "asymptotically the same"). In particular, we show the existence of a sequence of "exceptional" length scales.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [31] THE SHAPE OF TWO-DIMENSIONAL PERCOLATION AND ISING CLUSTERS
    QUANDT, S
    YOUNG, AP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13): : L851 - L856
  • [32] PERCOLATION AND CONDUCTIVITY OF RANDOM TWO-DIMENSIONAL COMPOSITES
    WINTERFELD, PH
    SCRIVEN, LE
    DAVIS, HT
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (17): : 2361 - 2376
  • [33] Percolation and epidemics in a two-dimensional small world
    Newman, MEJ
    Jensen, I
    Ziff, RM
    PHYSICAL REVIEW E, 2002, 65 (02)
  • [34] RECIPROCITY RELATIONS IN TWO-DIMENSIONAL PERCOLATION THEORY
    BALAGUROV, BY
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1981, 81 (02): : 665 - 671
  • [35] Geometry of fully coordinated, two-dimensional percolation
    Cuansing, E
    Kim, JH
    Nakanishi, H
    PHYSICAL REVIEW E, 1999, 60 (04): : 3670 - 3675
  • [36] Alternative criterion for two-dimensional wrapping percolation
    Yang, Hongting
    PHYSICAL REVIEW E, 2012, 85 (04)
  • [37] PERCOLATION IN TWO-DIMENSIONAL, MACROSCOPICALLY ANISOTROPIC SYSTEMS
    MENDELSON, KS
    KARIORIS, FG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (01): : 37 - 37
  • [38] Arm Events in Two-Dimensional Invasion Percolation
    Michael Damron
    Jack Hanson
    Philippe Sosoe
    Journal of Statistical Physics, 2018, 173 : 1321 - 1352
  • [39] Exact results at the two-dimensional percolation point
    Kleban, P
    Ziff, RM
    PHYSICAL REVIEW B, 1998, 57 (14): : R8075 - R8078
  • [40] Channeling and percolation in two-dimensional chaotic dynamics
    Chaikovsky, D. K.
    Zaslavsky, G. M.
    CHAOS, 1991, 1 (04) : 463 - 472