TWO-DIMENSIONAL VOLUME-FROZEN PERCOLATION: EXCEPTIONAL SCALES

被引:7
|
作者
van den Berg, Jacob [1 ]
Nolin, Pierre [2 ]
机构
[1] CWI, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[2] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 01期
关键词
Frozen percolation; near-critical percolation; sol-gel transitions; BROWNIAN INTERSECTION EXPONENTS; SQUARE LATTICE; PLANE; CLUSTERS; VALUES;
D O I
10.1214/16-AAP1198
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a percolation model on the square lattice, where clusters "freeze" (stop growing) as soon as their volume (i.e., the number of sites they contain) gets larger than N, the parameter of the model. A model where clusters freeze when they reach diameter at least N was studied in van den Berg, de Lima and Nolin [Random Structures Algorithms 40 (2012) 220-226] and Kiss [Probab. Theory Related Fields 163 (2015) 713-768]. Using volume as a way to measure the size of a cluster instead of diameter leads, for large N, to a quite different behavior (contrary to what happens on the binary tree van den Berg, de Lima and Nolin (2012), where the volume model and the diameter model are "asymptotically the same"). In particular, we show the existence of a sequence of "exceptional" length scales.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [1] TWO-DIMENSIONAL VOLUME-FROZEN PERCOLATION: DECONCENTRATION AND PREVALENCE OF MESOSCOPIC CLUSTERS
    Van Den Berg, Jacob
    Kiss, Demeter
    Nolin, Pierre
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (04): : 1017 - 1084
  • [2] ON THE SPREADING OF TWO-DIMENSIONAL PERCOLATION
    GRASSBERGER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (04): : L215 - L219
  • [3] Isoperimetry in Two-Dimensional Percolation
    Biskup, Marek
    Louidor, Oren
    Procaccia, Eviatar B.
    Rosenthal, Ron
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (09) : 1483 - 1531
  • [4] ON TWO-DIMENSIONAL DIRECTED PERCOLATION
    ESSAM, JW
    GUTTMANN, AJ
    DEBELL, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (19): : 3815 - 3832
  • [5] MAXIMUM PERCOLATION TIME IN TWO-DIMENSIONAL BOOTSTRAP PERCOLATION
    Benevides, Fabricio
    Przykucki, Michal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 224 - 251
  • [6] Universality in two-dimensional enhancement percolation
    Camia, Federico
    RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (03) : 377 - 408
  • [7] Critical exponents for two-dimensional percolation
    Smirnov, S
    Werner, W
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (5-6) : 729 - 744
  • [8] On Percolation of Two-Dimensional Hard Disks
    Magazinov, Alexander
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (01) : 1 - 43
  • [9] Uniqueness in two-dimensional rigidity percolation
    Häggström, O
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 : 175 - 188
  • [10] TWO-DIMENSIONAL SITE PERCOLATION AND CONDUCTION
    NAKAMURA, M
    MIZUNO, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (29): : 5979 - 5985