The hull and geodetic numbers of orientations of graphs

被引:4
|
作者
Hung, Jung-Ting [1 ]
Tong, Li-Da [1 ]
Wang, Hong-Tsu [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
关键词
Hull number; Geodetic number; Orientation; CONVEXITY;
D O I
10.1016/j.disc.2008.04.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an oriented graph D, let I-D[u, v] denote the set of all vertices lying on a u-v geodesic or a v-u geodesic. For S subset of V(D), let I-D[S] denote the union of all I-D[u, v] for all u, v is an element of S. Let [S](D) denote the smallest convex set containing S. The geodetic number g(D) of an oriented graph D is the minimum cardinality of a set S with I-D[S] = V(D) and the hull number h(D) of an oriented graph D is the minimum cardinality of a set S with [S](D) = V(D). For a connected graph G, let O(G) be the set of all orientations of G, define g(-)(G) = min{g(D) : D is an element of O(G)}, g(+) (G) = maxi{g(D) : D is an element of O(G)}, h(-)(G) = min{h(D) : D is an element of O(G)}, and h(+) (G) = max{h(D) : D is an element of O(G)}. By the above definitions, h(-) (G) <= g(-)(G) and h(+)(G) <= g(+) (G). In the paper, we prove that g-(G) < h+(G) for a connected graph G of order at least 3, and for any nonnegative integers a and b, there exists a connected graph G such that g(-) (G) - h(-) (G) = a and g(+) (G) - h(+) (G) = b. These results answer a problem of Farrugia in [A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2134 / 2139
页数:6
相关论文
共 50 条
  • [21] GEODETIC ORIENTATIONS OF COMPLETE K-PARTITE GRAPHS
    GASSMAN, LD
    ENTRINGER, RC
    GILBERT, JR
    LONZ, SA
    VUCENIC, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (03) : 214 - 238
  • [22] On closed and upper closed geodetic numbers of graphs
    Jamil, Ferdinand P.
    Aniversario, Imelda S.
    Canoy, Sergio R., Jr.
    ARS COMBINATORIA, 2007, 84 : 191 - 203
  • [23] On the Caratheodory and exchange numbers of geodetic convexity in graphs
    Anand, Bijo S.
    Chandran, Ullas S., V
    Changat, Manoj
    Dourado, Mitre C.
    Nezhad, Ferdoos Hossein
    Narasimha-Shenoi, Prasanth G.
    THEORETICAL COMPUTER SCIENCE, 2020, 804 : 46 - 57
  • [24] The Closed Geodetic Numbers of the Corona and Composition of Graphs
    Jamil, Ferdinand P.
    Aniversario, Imelda S.
    Canoy, Sergio R., Jr.
    UTILITAS MATHEMATICA, 2010, 82 : 135 - 153
  • [25] On the Monitoring-Edge-Geodetic Numbers of Line Graphs
    Bao, Gemaji
    Yang, Chenxu
    Ma, Zhiqiang
    Ji, Zhen
    Xu, Xin
    Qin, Peiyao
    JOURNAL OF INTERCONNECTION NETWORKS, 2024, 24 (04)
  • [26] Geodetic numbers of tensor product and lexicographic product of graphs
    Chandrasekar, K. Raja
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025, 22 (01) : 106 - 114
  • [27] On the geodetic domination and domination numbers of some Cartesian product graphs
    Zhao, Min
    Wang, Qin
    ARS COMBINATORIA, 2019, 142 : 381 - 391
  • [28] PATH-INDUCED CLOSED GEODETIC NUMBERS OF SOME GRAPHS
    Cauntongan, Omar, I
    Aniversario, Imelda S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 22 (01): : 41 - 53
  • [29] PATH-INDUCED GEODETIC NUMBERS OF THE JOIN AND CORONA OF GRAPHS
    Villarante, Ruthlyn N.
    Aniversario, Imelda S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (04): : 463 - 478
  • [30] On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs
    John, J.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)