Geodetic numbers of tensor product and lexicographic product of graphs

被引:0
|
作者
Chandrasekar, K. Raja [1 ]
机构
[1] Natl Inst Technol Puducherry, Dept Math, Pondicherry, India
关键词
Distance; geodesic; geodetic number; tensor product; lexicographic product; HULL NUMBERS; SETS;
D O I
10.1080/09728600.2024.2422535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A shortest u - v path between two vertices u and v of a graph G is a u - v geodesic of G. Let I[u, v] denote the set of all internal vertices lying on some u - v geodesic of G. For a nonempty subset S of V(G) , let I(S)=boolean OR u,v is an element of SI[u,v] . If I(S)=V(G) , then S is a geodetic set of G. The cardinality of a minimum geodetic set of G is the geodetic number of G and it is denoted by g(G). In this paper, the exact geodetic numbers of the product graphs TxKm and T degrees K<overline>m are obtained, where T is a tree, K<overline>m denotes the complement of the complete graph Km and, x and degrees denote the tensor product and lexicographic product $($also called the wreath product$)$ of graphs, respectively.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [1] The geodetic number of the lexicographic product of graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1693 - 1698
  • [2] On the geodetic and the hull numbers in strong product graphs
    Caceres, J.
    Hernando, C.
    Mora, M.
    Pelayo, I. M.
    Puertas, M. L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (11) : 3020 - 3031
  • [3] LEXICOGRAPHIC PRODUCT OF GRAPHS
    HEMMINGER, RL
    DUKE MATHEMATICAL JOURNAL, 1966, 33 (03) : 499 - +
  • [4] LEXICOGRAPHIC PRODUCT OF GRAPHS
    IMRICH, W
    ARCHIV DER MATHEMATIK, 1969, 20 (03) : 228 - &
  • [5] LEXICOGRAPHIC PRODUCT OF GRAPHS
    SABIDUSSI, G
    DUKE MATHEMATICAL JOURNAL, 1961, 28 (04) : 573 - &
  • [6] Connectivity of lexicographic product and direct product of graphs
    Yang, Chao
    Xu, Jun-Ming
    ARS COMBINATORIA, 2013, 111 : 3 - 12
  • [7] On the geodetic domination and domination numbers of some Cartesian product graphs
    Zhao, Min
    Wang, Qin
    ARS COMBINATORIA, 2019, 142 : 381 - 391
  • [8] Domination in lexicographic product graphs
    Zhang, Xindong
    Liu, Juan
    Meng, Jixiang
    ARS COMBINATORIA, 2011, 101 : 251 - 256
  • [9] LEXICOGRAPHIC PRODUCT OF ALIGNED GRAPHS
    DORFLER, W
    IMRICH, W
    MONATSHEFTE FUR MATHEMATIK, 1972, 76 (01): : 21 - &
  • [10] Lexicographic Product of Extendable Graphs
    Bai, Bing
    Wu, Zefang
    Yang, Xu
    Yu, Qinglin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (02) : 197 - 204