Geodetic numbers of tensor product and lexicographic product of graphs

被引:0
|
作者
Chandrasekar, K. Raja [1 ]
机构
[1] Natl Inst Technol Puducherry, Dept Math, Pondicherry, India
关键词
Distance; geodesic; geodetic number; tensor product; lexicographic product; HULL NUMBERS; SETS;
D O I
10.1080/09728600.2024.2422535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A shortest u - v path between two vertices u and v of a graph G is a u - v geodesic of G. Let I[u, v] denote the set of all internal vertices lying on some u - v geodesic of G. For a nonempty subset S of V(G) , let I(S)=boolean OR u,v is an element of SI[u,v] . If I(S)=V(G) , then S is a geodetic set of G. The cardinality of a minimum geodetic set of G is the geodetic number of G and it is denoted by g(G). In this paper, the exact geodetic numbers of the product graphs TxKm and T degrees K<overline>m are obtained, where T is a tree, K<overline>m denotes the complement of the complete graph Km and, x and degrees denote the tensor product and lexicographic product $($also called the wreath product$)$ of graphs, respectively.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [31] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [32] LEXICOGRAPHIC PRODUCT AND STRONG PRODUCT ON INTERVAL VALUED PICTURE FUZZY GRAPHS
    Kamali, R.
    Jayalakshmi, S.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 667 - 684
  • [33] SECURE DOMINATING SETS IN THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    Canoy, Sergio R., Jr.
    Canoy, Seanne Abigail E.
    Cruzate, Marlon F.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (01): : 13 - 24
  • [34] Domination polynomial of lexicographic product of specific graphs
    Alikhani, Saeid
    Jahari, Somayeh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (05): : 1019 - 1028
  • [35] The Local Metric Dimension of the Lexicographic Product of Graphs
    Barragan-Ramirez, Gabriel A.
    Estrada-Moreno, Alejandro
    Ramirez-Cruz, Yunior
    Rodriguez-Velazquez, Juan A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2481 - 2496
  • [36] On the path-connectivity of lexicographic product graphs
    Zhang, Shumin
    Ye, Chengfu
    ARS COMBINATORIA, 2015, 121 : 141 - 158
  • [37] The Local Metric Dimension of the Lexicographic Product of Graphs
    Gabriel A. Barragán-Ramírez
    Alejandro Estrada-Moreno
    Yunior Ramírez-Cruz
    Juan A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2481 - 2496
  • [38] Strong Resolving Domination in the Lexicographic Product of Graphs
    Monsanto, Gerald B.
    Acal, Penelyn L.
    Rara, Helen M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 363 - 372
  • [39] Lexicographic product graphs Pm[Pn] are antimagic
    Ma, Wenhui
    Dong, Guanghua
    Lu, Yingyu
    Wang, Ning
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (03) : 271 - 283
  • [40] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220