Improved Sobolev Embedding Theorems for Vector-Valued Functions

被引:3
|
作者
Ichinose, Takashi [1 ]
Saito, Yoshimi [2 ]
机构
[1] Kanazawa Univ, Fac Sci, Dept Math, Kanazawa, Ishikawa 9201192, Japan
[2] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2014年 / 57卷 / 02期
关键词
Sobolev inequality; Gagliardo-Nirenberg inequality; Improved Sobolev embedding theorem; Dirac-Sobolev inequality; Sobolev inequality for vector-valued functions; Dirac operator; DIV-CURL; DIRAC;
D O I
10.1619/fesi.57.245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give an extension of the improved Sobolev embedding theorem for single-valued functions to the case of vector-valued functions which is involved with the three-dimensional massless Dirac operator together with the three- or two-dimensional Weyl-Dirac (or Pauli) operator, the Cauchy-Riemann operator and also the four-dimensional Euclidian Dirac operator.
引用
收藏
页码:245 / 295
页数:51
相关论文
共 50 条
  • [1] Mapping theorems for Sobolev spaces of vector-valued functions
    Arendt, Wolfgang
    Kreuter, Marcel
    [J]. STUDIA MATHEMATICA, 2018, 240 (03) : 275 - 299
  • [2] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [3] Sobolev spaces of vector-valued functions
    Iván Caamaño
    Jesús Á. Jaramillo
    Ángeles Prieto
    Alberto Ruiz de Alarcón
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [4] MOLECULAR DECOMPOSITIONS AND EMBEDDING-THEOREMS FOR VECTOR-VALUED SOBOLEV SPACES WITH GRADIENT NORM
    PELCZYNSKI, A
    WOJCIECHOWSKI, M
    [J]. STUDIA MATHEMATICA, 1993, 107 (01) : 61 - 100
  • [5] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [6] SOME MINIMAX THEOREMS IN VECTOR-VALUED FUNCTIONS
    NIEUWENHUIS, JW
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1983, 40 (03) : 463 - 475
  • [7] Uniqueness theorems for analytic vector-valued functions
    Fricain E.
    [J]. Journal of Mathematical Sciences, 2000, 101 (3) : 3193 - 3210
  • [8] ABELIAN ERGODIC THEOREMS FOR VECTOR-VALUED FUNCTIONS
    KOPP, PE
    [J]. GLASGOW MATHEMATICAL JOURNAL, 1975, 16 (MAR) : 57 - 60
  • [9] Poincare and Sobolev type inequalities for vector-valued functions
    Anastassiou, George A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 1102 - 1113
  • [10] ENCLOSURE THEOREMS FOR VECTOR-VALUED FUNCTIONS .2.
    LIZORKIN, PI
    SHAKHMUROV, VB
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (02): : 47 - 54