Mapping theorems for Sobolev spaces of vector-valued functions

被引:22
|
作者
Arendt, Wolfgang [1 ]
Kreuter, Marcel [1 ]
机构
[1] Ulm Univ, Inst Appl Anal, D-89069 Ulm, Germany
关键词
Sobolev spaces of vector-valued functions; composition with Lipschitz continuous mappings; composition with Gateaux differentiable mappings; embedding theorems; Aubin-Lions Lemma; boundary values; DIFFUSION;
D O I
10.4064/sm8757-4-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Sobolev spaces with values in Banach spaces, with emphasis on mapping properties. Our main results are the following: Given two Banach spaces X not equal{0} and Y, each Lipschitz continuous mapping F : X -> Y gives rise to a mapping u bar right arrow o u W-1,W- p (Omega, X) to W-1,W- p (Omega, Y) if and only if Y has the Radon Nikodym Property. But if in addition F is one-sided Gateaux differentiable, no condition on the space is needed. We also study when weak properties in the sense of duality imply strong properties. Our results are applied to prove embedding theorems, a multi-dimensional version of the Aubin Lions Lemma and characterizations of the space W-0(1, p) (Omega, X).
引用
收藏
页码:275 / 299
页数:25
相关论文
共 50 条
  • [1] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [2] Sobolev spaces of vector-valued functions
    Iván Caamaño
    Jesús Á. Jaramillo
    Ángeles Prieto
    Alberto Ruiz de Alarcón
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [3] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [4] Improved Sobolev Embedding Theorems for Vector-Valued Functions
    Ichinose, Takashi
    Saito, Yoshimi
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2014, 57 (02): : 245 - 295
  • [5] THEOREMS ON IMBEDDING IN ANISOTROPIC SPACES OF VECTOR-VALUED FUNCTIONS
    YAKUBOV, SY
    SHAKHMUROV, VB
    [J]. MATHEMATICAL NOTES, 1977, 22 (1-2) : 657 - 659
  • [6] Traces of vector-valued Sobolev spaces
    Scharf, Benjamin
    Schmeisser, Hans-Juergen
    Sickel, Winfried
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 1082 - 1106
  • [7] CONTINUITY OF OPERATORS IN THE SPACES OF MEASURABLE VECTOR VALUED FUNCTIONS WITH APPLICATIONS TO THE INVESTIGATION OF SOBOLEV SPACES AND ANALYTIC-FUNCTIONS IN VECTOR-VALUED CASE
    BUKHVALOV, AV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1979, 246 (03): : 524 - 528
  • [8] MOLECULAR DECOMPOSITIONS AND EMBEDDING-THEOREMS FOR VECTOR-VALUED SOBOLEV SPACES WITH GRADIENT NORM
    PELCZYNSKI, A
    WOJCIECHOWSKI, M
    [J]. STUDIA MATHEMATICA, 1993, 107 (01) : 61 - 100
  • [9] Vector-valued Sobolev spaces based on Banach function spaces
    Evseev, Nikita
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [10] TRANSITIVITY IN SPACES OF VECTOR-VALUED FUNCTIONS
    Cabello Sanchez, Felix
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 601 - 608