Sobolev spaces of vector-valued functions

被引:0
|
作者
Iván Caamaño
Jesús Á. Jaramillo
Ángeles Prieto
Alberto Ruiz de Alarcón
机构
[1] Universidad Complutense de Madrid,Departamento de Análisis Matemático y Matemática Aplicada, Facultad de Ciencias Matemáticas
[2] Universidad Complutense de Madrid,Instituto de Matemática Interdisciplinar (IMI), Facultad de Ciencias Matemáticas
[3] Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM),undefined
[4] C/ Nicolás Cabrera,undefined
关键词
Sobolev spaces; Vector-valued functions; 46E35; 46E40; 46B22;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned here with Sobolev-type spaces of vector-valued functions. For an open subset Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^N$$\end{document} and a Banach space V, we compare the classical Sobolev space W1,p(Ω,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}(\Omega , V)$$\end{document} with the so-called Sobolev–Reshetnyak space R1,p(Ω,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{1,p}(\Omega , V)$$\end{document}. We see that, in general, W1,p(Ω,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}(\Omega , V)$$\end{document} is a closed subspace of R1,p(Ω,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{1,p}(\Omega , V)$$\end{document}. As a main result, we obtain that W1,p(Ω,V)=R1,p(Ω,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,p}(\Omega , V)=R^{1,p}(\Omega , V)$$\end{document} if, and only if, the Banach space V has the Radon–Nikodým property
引用
收藏
相关论文
共 50 条
  • [1] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [2] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [3] Mapping theorems for Sobolev spaces of vector-valued functions
    Arendt, Wolfgang
    Kreuter, Marcel
    [J]. STUDIA MATHEMATICA, 2018, 240 (03) : 275 - 299
  • [4] Traces of vector-valued Sobolev spaces
    Scharf, Benjamin
    Schmeisser, Hans-Juergen
    Sickel, Winfried
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 1082 - 1106
  • [5] CONTINUITY OF OPERATORS IN THE SPACES OF MEASURABLE VECTOR VALUED FUNCTIONS WITH APPLICATIONS TO THE INVESTIGATION OF SOBOLEV SPACES AND ANALYTIC-FUNCTIONS IN VECTOR-VALUED CASE
    BUKHVALOV, AV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1979, 246 (03): : 524 - 528
  • [6] Vector-valued Sobolev spaces based on Banach function spaces
    Evseev, Nikita
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [7] TRANSITIVITY IN SPACES OF VECTOR-VALUED FUNCTIONS
    Cabello Sanchez, Felix
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 601 - 608
  • [8] Realcompactness and spaces of vector-valued functions
    Araujo, J
    [J]. FUNDAMENTA MATHEMATICAE, 2002, 172 (01) : 27 - 40
  • [9] Spaces of vector-valued functions and their duals
    Roth, Walter
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 1063 - 1081
  • [10] SPACES OF VECTOR-VALUED MEASURABLE FUNCTIONS
    JONGE, ED
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1976, 149 (02) : 97 - 107