The solution to the time-dependent Maxwell equations with charges in a 2D nonsmooth domain

被引:6
|
作者
Assous, F
Ciarlet, P
Garcia, E
机构
[1] CEA, DIF, DPTA, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, UMA, F-75739 Paris, France
关键词
D O I
10.1016/S0764-4442(00)00159-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [3] and [2], we considered the numerical solution to the time-dependent Maxwell equations in the absence of charges in a 2D non-convex domain, using the so-called singular complement method (SCM), for which the computed fields are continuous. In this paper we present an extension of the SCM, which allows to solve efficiently the time-dependent Maxwell equations with charges, with almost no additional computational cost. Thus, the numerical solution to the Vlasov-Maxwell system of equations can be achieved by coupling the SCM to a particle solver (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 50 条
  • [41] 2D Navier–Stokes Equations in a Time Dependent Domain with Neumann Type Boundary Conditions
    Ján Filo
    Anna Zaušková
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 1 - 46
  • [42] Optimal error estimate of the penalty method for the 2D/3D time-dependent MHD equations
    Shi, Kaiwen
    Feng, Xinlong
    Su, Haiyan
    NUMERICAL ALGORITHMS, 2023, 93 (03) : 1337 - 1371
  • [43] Optimal error estimate of the penalty method for the 2D/3D time-dependent MHD equations
    Kaiwen Shi
    Xinlong Feng
    Haiyan Su
    Numerical Algorithms, 2023, 93 : 1337 - 1371
  • [45] SOLUTION OF A NONLINEAR MIXED PROBLEM FOR NAVIER-STOKES EQUATIONS IN A TIME-DEPENDENT DOMAIN
    PROUSE, G
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 50 (04): : 413 - &
  • [46] SOLUTION OF A NONLINEAR MIXED PROBLEM FOR NAVIER-STOKES EQUATIONS IN A TIME-DEPENDENT DOMAIN
    PROUSE, G
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 50 (05): : 503 - &
  • [47] Least squares spectral element method for 2D Maxwell equations in the frequency domain
    Maggio, F
    Mazzarella, G
    Pitzianti, C
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2004, 17 (06) : 509 - 522
  • [48] Numerical solution to time-dependent 4D inviscid Burgers' equations
    Kansa, E. J.
    Geiser, Juergen
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (03) : 637 - 645
  • [49] Visualization of Parameter Sensitivity of 2D Time-Dependent Flow
    Hanser, Karsten
    Kleine, Ole
    Rieck, Bastian
    Wiebe, Bettina
    Selz, Tobias
    Piatkowski, Marian
    Sagrista, Antoni
    Zheng, Boyan
    Lukacova-Medvidova, Maria
    Craig, George
    Leitte, Heike
    Sadlo, Filip
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 359 - 370
  • [50] A priori and posteriori error analysis for time-dependent Maxwell's equations
    Li, Jichun
    Lin, Yanping
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 292 : 54 - 68