The solution to the time-dependent Maxwell equations with charges in a 2D nonsmooth domain

被引:6
|
作者
Assous, F
Ciarlet, P
Garcia, E
机构
[1] CEA, DIF, DPTA, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, UMA, F-75739 Paris, France
关键词
D O I
10.1016/S0764-4442(00)00159-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [3] and [2], we considered the numerical solution to the time-dependent Maxwell equations in the absence of charges in a 2D non-convex domain, using the so-called singular complement method (SCM), for which the computed fields are continuous. In this paper we present an extension of the SCM, which allows to solve efficiently the time-dependent Maxwell equations with charges, with almost no additional computational cost. Thus, the numerical solution to the Vlasov-Maxwell system of equations can be achieved by coupling the SCM to a particle solver (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 50 条
  • [21] Interpolating wavelets for the solution of Maxwell equations in the time domain
    Rubinacci, G
    Tamburrino, A
    Ventre, S
    Villone, F
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2775 - 2778
  • [22] NUMERICAL-SOLUTION OF MAXWELL EQUATIONS IN THE TIME DOMAIN
    ORISTAGLIO, ML
    HOHMANN, GH
    GEOPHYSICS, 1983, 48 (04) : 464 - 464
  • [23] Three dimensional elastodynamics of 2D quasicrystals: The derivation of the time-dependent fundamental solution
    Yakhno, V. G.
    Yaslan, H. Cerdik
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) : 3092 - 3110
  • [24] Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains:: the singular complement method
    Assous, F
    Ciarlet, P
    Labrunie, S
    Segré, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (01) : 147 - 176
  • [25] Time-dependent backgrounds of 2D string theory
    Alexandrov, SY
    Kazakov, VA
    Kostov, IK
    NUCLEAR PHYSICS B, 2002, 640 (1-2) : 119 - 144
  • [26] Time-dependent 2D spacetimes from matrices
    Das, SR
    MODERN PHYSICS LETTERS A, 2005, 20 (28) : 2101 - 2118
  • [27] A COMPARISON OF 3 MIXED METHODS FOR THE TIME-DEPENDENT MAXWELL EQUATIONS
    MONK, P
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05): : 1097 - 1122
  • [28] Weak Galerkin methods for time-dependent Maxwell's equations
    Shields, Sidney
    Li, Jichun
    Machorro, Eric A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2106 - 2124
  • [29] Superconvergence analysis for time-dependent Maxwell's equations in metamaterials
    Huang, Yunqing
    Li, Jichun
    Lin, Qun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (06) : 1794 - 1816
  • [30] New numerical methods for solving the time-dependent Maxwell equations
    De Raedt, H
    Kole, JS
    Michielsen, KFL
    Figge, MT
    COMPUTATIONAL ACCELERATOR PHYSICS 2002, 2005, 175 : 63 - 72