The solution to the time-dependent Maxwell equations with charges in a 2D nonsmooth domain

被引:6
|
作者
Assous, F
Ciarlet, P
Garcia, E
机构
[1] CEA, DIF, DPTA, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, UMA, F-75739 Paris, France
关键词
D O I
10.1016/S0764-4442(00)00159-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [3] and [2], we considered the numerical solution to the time-dependent Maxwell equations in the absence of charges in a 2D non-convex domain, using the so-called singular complement method (SCM), for which the computed fields are continuous. In this paper we present an extension of the SCM, which allows to solve efficiently the time-dependent Maxwell equations with charges, with almost no additional computational cost. Thus, the numerical solution to the Vlasov-Maxwell system of equations can be achieved by coupling the SCM to a particle solver (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 50 条
  • [1] Time-dependent Maxwell's equations with charges in singular geometries
    Assous, F.
    Ciarlet, P., Jr.
    Garcia, E.
    Segre, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) : 665 - 681
  • [2] Hybrid time domain solvers for the Maxwell equations in 2D
    Abenius, E
    Andersson, U
    Edelvik, F
    Eriksson, L
    Ledfelt, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (09) : 2185 - 2199
  • [3] An elementary solution of the Maxwell equations for a time-dependent source
    Rivera, R
    Villarroel, D
    EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (06) : 593 - 603
  • [4] Regularity in time of the time-dependent Maxwell equations
    Assous, F
    Ciarlet, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 719 - 724
  • [5] EXACT SOLUTION OF P1 TIME-DEPENDENT EQUATIONS WITH TIME-DEPENDENT CROSS-SECTIONS FOR 2D AND 3D GEOMETRY
    LEMANSKA, M
    MENNIG, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1974, 25 (06): : 735 - 741
  • [6] DIRECT INTEGRATION OF TIME-DEPENDENT MAXWELL EQUATIONS
    UNZ, H
    AMERICAN JOURNAL OF PHYSICS, 1966, 34 (11) : 1015 - &
  • [7] Numerical solution of the time-dependent Maxwell's equations for random dielectric media
    Harshawardhan, W
    Su, Q
    Grobe, R
    PHYSICAL REVIEW E, 2000, 62 (06): : 8705 - 8712
  • [8] Split operator solution of the time-dependent Maxwell's equations for random scatterers
    Su, Q
    Mandel, S
    Menon, S
    Grobe, R
    INTERNATIONAL WORKSHOP ON PHOTONICS AND IMAGING IN BIOLOGY AND MEDICINE, 2001, 4536 : 245 - 252
  • [9] Numerical solution techniques to the time-dependent Maxwell equations for highly scattering media
    Mandel, S
    Menon, S
    Harshawardhan, W
    Su, Q
    Grobe, R
    PHOTON MIGRATION, OPTICAL COHERENCE TOMOGRAPHY, AND MICROSCOPY, 2001, 4431 : 165 - 168
  • [10] SOLUTION OF MAXWELL EQUATIONS IN TIME-DOMAIN
    GRANDO, J
    FERRIERES, X
    RECHERCHE AEROSPATIALE, 1994, (06): : 379 - 398