Geometry of two-qubit states with negative conditional entropy

被引:13
|
作者
Friis, Nicolai [1 ]
Bulusu, Sridhar [2 ]
Bertlmann, Reinhold A. [2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21a, A-6020 Innsbruck, Austria
[2] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
关键词
entanglement detection; geometry of entanglement; negative conditional entropy; Weyl states; INFORMATION-THEORY; SEPARABILITY CRITERION; QUANTUM ENTANGLEMENT; BELL INEQUALITIES; DENSITY-MATRICES; MIXED STATES; NONLOCALITY;
D O I
10.1088/1751-8121/aa5dfd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the geometric features of negative conditional entropy and the properties of the conditional amplitude operator proposed by Cerf and Adami for two qubit states in comparison with entanglement and nonlocality of the states. We identify the region of negative conditional entropy in the tetrahedron of locally maximally mixed two-qubit states. Within this set of states, negative conditional entropy implies nonlocality and entanglement, but not vice versa, and we show that the Cerf-Adami conditional amplitude operator provides an entanglement witness equivalent to the Peres-Horodecki criterion. Outside of the tetrahedron this equivalence is generally not true.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Topological phase for entangled two-qubit states
    Milman, P
    Mosseri, R
    PHYSICAL REVIEW LETTERS, 2003, 90 (23)
  • [42] Quantifying entanglement of two-qubit Werner states
    Czerwinski, Artur
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (08)
  • [43] Quantum discord of two-qubit X states
    Chen, Qing
    Zhang, Chengjie
    Yu, Sixia
    Yi, X. X.
    Oh, C. H.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [44] Local correlations of mixed two-qubit states
    Zhang, Fu-Lin
    Chen, Jing-Ling
    Ren, Chang-Liang
    Shi, Ming-Jun
    PHYSICS LETTERS A, 2010, 374 (24) : 2429 - 2433
  • [45] Experimental information complementarity of two-qubit states
    Fedrizzi, A.
    Skerlak, B.
    Paterek, T.
    de Almeida, M. P.
    White, A. G.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [46] Maximally Entangled States of a Two-Qubit System
    Singh, Manu P.
    Rajput, B. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (12) : 4237 - 4255
  • [47] Quantum Discord of Certain Two-Qubit States
    Zhou, Jianming
    Hu, Xiaoli
    Jing, Naihuan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (02) : 415 - 425
  • [48] Entropy inequalities and Bell inequalities for two-qubit systems
    Santos, Emilio
    Physical Review A - Atomic, Molecular, and Optical Physics, 2004, 69 (02): : 223051 - 223056
  • [49] Probing the geometry of two-qubit state space by evolution
    Andrzej M. Frydryszak
    Maria Gieysztor
    Andrij Kuzmak
    Quantum Information Processing, 2019, 18
  • [50] Probabilistically teleporting arbitrary two-qubit states
    Binayak S. Choudhury
    Arpan Dhara
    Quantum Information Processing, 2016, 15 : 5063 - 5071