Geometry of two-qubit states with negative conditional entropy

被引:13
|
作者
Friis, Nicolai [1 ]
Bulusu, Sridhar [2 ]
Bertlmann, Reinhold A. [2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21a, A-6020 Innsbruck, Austria
[2] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
关键词
entanglement detection; geometry of entanglement; negative conditional entropy; Weyl states; INFORMATION-THEORY; SEPARABILITY CRITERION; QUANTUM ENTANGLEMENT; BELL INEQUALITIES; DENSITY-MATRICES; MIXED STATES; NONLOCALITY;
D O I
10.1088/1751-8121/aa5dfd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the geometric features of negative conditional entropy and the properties of the conditional amplitude operator proposed by Cerf and Adami for two qubit states in comparison with entanglement and nonlocality of the states. We identify the region of negative conditional entropy in the tetrahedron of locally maximally mixed two-qubit states. Within this set of states, negative conditional entropy implies nonlocality and entanglement, but not vice versa, and we show that the Cerf-Adami conditional amplitude operator provides an entanglement witness equivalent to the Peres-Horodecki criterion. Outside of the tetrahedron this equivalence is generally not true.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] CLASSICALITY WITNESS FOR TWO-QUBIT STATES
    Maziero, Jonas
    Serra, Roberto M.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (03)
  • [32] ENTANGLEMENT OF TWO-QUBIT NONORTHOGONAL STATES
    Berrada, K.
    Chafik, A.
    Eleuch, H.
    Hassouni, Y.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (08): : 2021 - 2027
  • [33] Symmetric extension of two-qubit states
    Chen, Jianxin
    Ji, Zhengfeng
    Kribs, David
    Luetkenhaus, Norbert
    Zeng, Bei
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [34] Two-qubit causal structures and the geometry of positive qubit-maps
    Kubler, Jonas M.
    Braun, Daniel
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [35] Probing the geometry of two-qubit state space by evolution
    Frydryszak, Andrzej M.
    Gieysztor, Maria
    Kuzmak, Andrij
    QUANTUM INFORMATION PROCESSING, 2019, 18 (03)
  • [36] Interplay between entanglement and entropy in two-qubit systems
    Mazzola, L.
    Maniscalco, S.
    Piilo, J.
    Suominen, K-A
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (08)
  • [37] A Characterization of Maximally Entangled Two-Qubit States
    Duan, Junjun
    Zhang, Lin
    Qian, Quan
    Fei, Shao-Ming
    ENTROPY, 2022, 24 (02)
  • [38] Entropy inequalities and Bell inequalities for two-qubit systems
    Santos, E
    PHYSICAL REVIEW A, 2004, 69 (02): : 6
  • [39] Quantifying entanglement of two-qubit Werner states
    Artur Czerwinski
    CommunicationsinTheoreticalPhysics, 2021, 73 (08) : 77 - 83
  • [40] On two-qubit states ordering with quantum discords
    Okrasa, M.
    Walczak, Z.
    EPL, 2012, 98 (04)