Geometry of two-qubit states with negative conditional entropy

被引:13
|
作者
Friis, Nicolai [1 ]
Bulusu, Sridhar [2 ]
Bertlmann, Reinhold A. [2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21a, A-6020 Innsbruck, Austria
[2] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
关键词
entanglement detection; geometry of entanglement; negative conditional entropy; Weyl states; INFORMATION-THEORY; SEPARABILITY CRITERION; QUANTUM ENTANGLEMENT; BELL INEQUALITIES; DENSITY-MATRICES; MIXED STATES; NONLOCALITY;
D O I
10.1088/1751-8121/aa5dfd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the geometric features of negative conditional entropy and the properties of the conditional amplitude operator proposed by Cerf and Adami for two qubit states in comparison with entanglement and nonlocality of the states. We identify the region of negative conditional entropy in the tetrahedron of locally maximally mixed two-qubit states. Within this set of states, negative conditional entropy implies nonlocality and entanglement, but not vice versa, and we show that the Cerf-Adami conditional amplitude operator provides an entanglement witness equivalent to the Peres-Horodecki criterion. Outside of the tetrahedron this equivalence is generally not true.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] The Volume of Two-Qubit States by Information Geometry
    Rexiti, Milajiguli
    Felice, Domenico
    Mancini, Stefano
    ENTROPY, 2018, 20 (02):
  • [2] Quantum discord and geometry for a class of two-qubit states
    Li, Bo
    Wang, Zhi-Xi
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [3] Entanglement and entropy engineering of atomic two-qubit states
    Clark, SG
    Parkins, AS
    PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [4] Relative entropy of entanglement of two-qubit 'X' states
    黄接辉
    刘念华
    刘江涛
    于天宝
    何弦
    Chinese Physics B, 2010, 19 (11) : 88 - 93
  • [5] Relative entropy of entanglement of two-qubit 'X' states
    Huang Jie-Hui
    Liu Nian-Hua
    Liu Jiang-Tao
    Yu Tian-Bao
    He Xian
    CHINESE PHYSICS B, 2010, 19 (11)
  • [6] Geometry and Entanglement of Two-Qubit States in the Quantum Probabilistic Representation
    Alberto Lopez-Saldivar, Julio
    Castanos, Octavio
    Nahmad-Achar, Eduardo
    Lopez-Pena, Ramon
    Man'ko, Margarita A.
    Man'ko, Vladimir I.
    ENTROPY, 2018, 20 (09)
  • [7] Two-qubit mixed states and the entanglement-entropy frontier
    Wei, TC
    Nemoto, K
    Goldbart, PM
    Kwiat, PG
    Munro, WJ
    Verstraete, F
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 37 - 40
  • [8] Relative entropy of entanglement of a kind of two-qubit entangled states
    Chen, XY
    Meng, LM
    Jiang, LZ
    Li, XJ
    CHINESE PHYSICS LETTERS, 2005, 22 (11) : 2755 - 2758
  • [9] Classification of two-qubit states
    Caban, Pawe
    Rembielinski, Jakub
    Smolinski, Kordian A.
    Walczak, Zbigniew
    QUANTUM INFORMATION PROCESSING, 2015, 14 (12) : 4665 - 4690
  • [10] Geometric measure of quantum discord and the geometry of a class of two-qubit states
    Wei Song
    LongBao Yu
    Ping Dong
    DaChuang Li
    Ming Yang
    ZhuoLiang Cao
    Science China Physics, Mechanics and Astronomy, 2013, 56 : 737 - 744