Parameter Identification of a Permanent Magnet Synchronous Machine based on Current Decay Test and Particle Swarm Optimization

被引:1
|
作者
Perez, J. N. H. [1 ]
Hernandez, O. S. [2 ]
Caporal, R. M. [1 ]
Magdaleno, J. de J. R. [3 ]
Barreto, H. P. [4 ]
机构
[1] Inst Tecnol Apizaco, Tlaxcala, Mexico
[2] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico
[3] Inst Nacl Astrofis Opt & Electr, Dept Elect, Puebla, Mexico
[4] Lab Invest Control Reconfigurable, Queretaro, Mexico
关键词
Digital signal processor; parameter identification; permanent magnet synchronous machine; PSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Permanent Magnet Synchronous Machine (PMSM) is widely used in industrial applications. In order to obtain a high performance operation, an accurate knowledge of the machine parameters, such as direct (d) and quadrature (q) stator inductances is necessary. This paper presents two different methods to identify the stator inductances taking into account the magnetic saturation. First, Current Decay Test (CDT) is presented, then, Particle Swarm Optimization (PSO) algorithm. Both methods are used to identify the stator inductances. An own power electronic drive and a low cost digital signal processor (DSP) have been used on the experimental setup. Experimental results are presented to validate the theoretical work.
引用
收藏
页码:1176 / 1181
页数:6
相关论文
共 50 条
  • [41] Design and Identification of a Lumped-Parameter Thermal Network for Permanent Magnet Synchronous Motors Based on Heat Transfer Theory and Particle Swarm Optimisation
    Wallscheid, Oliver
    Boecker, Joachim
    2015 17TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'15 ECCE-EUROPE), 2015,
  • [42] Synchronisation based adaptive parameter identification for permanent magnet synchronous motors
    Liu, L.
    Cartes, D. A.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (04): : 1015 - 1022
  • [43] Online Parameter Identification for Model-Based Sensorless Control of Interior Permanent Magnet Synchronous Machine
    Rafaq, Muhammad Saad
    Mwasilu, Francis
    Kim, Jinuk
    Choi, Han Ho
    Jung, Jin-Woo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (06) : 4631 - 4643
  • [44] Particle Swarm-Based Optimization of an In Wheel Permanent Magnet Motor
    Lassaad, Zaaraoui
    Ali, Mansouri
    Hafedh, Trabelsi
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 138 - 144
  • [45] Optimization of Magnet Segmentation for Reduction of Eddy-Current Losses in Permanent Magnet Synchronous Machine
    Huang, Wan-Ying
    Bettayeb, Adel
    Kaczmarek, Robert
    Vannier, Jean-Claude
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (02) : 381 - 387
  • [46] Multiobjective Design of Permanent Magnet Synchronous Machines Based on Analytical Sub-Domain Particle Swarm Optimization
    Rezal, M.
    Ishak, Dahaman
    Salah, W. A.
    2017 3RD IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2017, : 230 - 235
  • [47] Research on Harmonic Elimination Method for Permanent Magnet Synchronous Motors Based on Improved Particle Swarm Optimization Algorithm
    Song, Dongran
    Pang, Huatong
    Yang, Jian
    Zhou, Jingyang
    Liu, Yifan
    Miao, Huarui
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 803 - 809
  • [48] Current Deadbeat Control of Permanent Magnet-Assisted Synchronous Reluctance Motor Based on Parameter Identification
    Xu, Aide
    Liu, Xin
    Li, Xinyu
    Hu, Shimai
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (18): : 5626 - 5638
  • [49] Variance-Based Robust Optimization of a Permanent Magnet Synchronous Machine
    Putek, Piotr A.
    ter Maten, E. Jan W.
    Gunther, Michael
    Sykulski, Jan K.
    IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (03)
  • [50] Performance Analysis of Permanent Magnet Synchronous Motor Drive using Particle Swarm Optimization Technique
    Yadav, Deepti
    Verma, Arunima
    2016 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRICAL ELECTRONICS & SUSTAINABLE ENERGY SYSTEMS (ICETEESES), 2016, : 280 - 285