Parameter Identification of a Permanent Magnet Synchronous Machine based on Current Decay Test and Particle Swarm Optimization

被引:1
|
作者
Perez, J. N. H. [1 ]
Hernandez, O. S. [2 ]
Caporal, R. M. [1 ]
Magdaleno, J. de J. R. [3 ]
Barreto, H. P. [4 ]
机构
[1] Inst Tecnol Apizaco, Tlaxcala, Mexico
[2] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico
[3] Inst Nacl Astrofis Opt & Electr, Dept Elect, Puebla, Mexico
[4] Lab Invest Control Reconfigurable, Queretaro, Mexico
关键词
Digital signal processor; parameter identification; permanent magnet synchronous machine; PSO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Permanent Magnet Synchronous Machine (PMSM) is widely used in industrial applications. In order to obtain a high performance operation, an accurate knowledge of the machine parameters, such as direct (d) and quadrature (q) stator inductances is necessary. This paper presents two different methods to identify the stator inductances taking into account the magnetic saturation. First, Current Decay Test (CDT) is presented, then, Particle Swarm Optimization (PSO) algorithm. Both methods are used to identify the stator inductances. An own power electronic drive and a low cost digital signal processor (DSP) have been used on the experimental setup. Experimental results are presented to validate the theoretical work.
引用
收藏
页码:1176 / 1181
页数:6
相关论文
共 50 条
  • [21] Operation Efficiency Optimization for Permanent Magnet Synchronous Motor Based on Improved Particle Swarm Optimization
    Chen, Zheng
    Li, Wanchao
    Shu, Xing
    Shen, Jiangwei
    Zhang, Yuanjian
    Shen, Shiquan
    IEEE ACCESS, 2021, 9 : 777 - 788
  • [22] Particle Swarm Optimization Based Vector Control of Permanent Magnet Synchronous Motor Drive
    Diab, Ahmed A. Zaki
    Selim, S. A.
    Elnaghi, Basem E.
    PROCEEDINGS OF THE 2016 IEEE NORTH WEST RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (ELCONRUSNW), 2016, : 740 - 746
  • [23] Optimal Design of Loss of Permanent Magnet Synchronous Motor Based on Particle Swarm Optimization
    Jin, Yong Xing
    Wang, Ai Yuan
    Wang, Tao
    Sun, Jian
    Wang, Ming Xing
    2018 1ST IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (IEEE SCEMS), 2018,
  • [24] Predictive Current Control of Permanent Magnet Synchronous Motor Based on Parameter Identification
    Wang C.
    Wang A.
    Progress In Electromagnetics Research C, 2023, 133 : 181 - 194
  • [25] Parameter Identification of a Lumped Parameter Thermal Model for a Permanent Magnet Synchronous Machine
    Guemo, Gilles Guedia
    Chantrenne, Patrice
    Jac, Julien
    2013 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2013, : 1316 - 1320
  • [26] Detent Force Reduction in Tubular Permanent Magnet Linear Synchronous Machine Using Particle Swarm Optimization
    Xiong, Yuansheng
    Liu, Chunyuan
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
  • [27] Design of Permanent Magnet Synchronous Motor Servo System Based on Improved Particle Swarm Optimization
    Fang, Shuhua
    Wang, Yicheng
    Wang, Wei
    Chen, Youxu
    Chen, Yong
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (05) : 5833 - 5846
  • [28] Predictive Current Control for Permanent Magnet Synchronous Motor Based on MRAS Parameter Identification
    Ding, Xue
    Wang, Shuang
    Zou, Mengxue
    Liu, Mengqi
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 345 - 349
  • [29] Energy Enhancement of Permanent Magnet Synchronous Generators Using Particle Swarm Optimization
    Marisargunam, S.
    Kalaivani, L.
    Maheswari, R., V
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (03): : 1711 - 1727
  • [30] Parameter identification of a Permanent Magnet Synchronous Motor
    Lozada-Castillo, N.
    Chairez, I.
    Luviano-Juarez, A.
    Escobar, J.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1005 - 1010