ORLICZ-FRACTIONAL MAXIMAL OPERATORS ON WEIGHTED Lp SPACES

被引:2
|
作者
Iida, Takeshi [1 ]
Sawano, Yoshihiro [2 ,3 ]
机构
[1] Fukushima Coll, Dept Gen Educ, Natl Inst Technol, Nagao 30, Iwaki, Fukushima 9708034, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Minamioosawa 1-1, Hachouji City, Tokyo 1920364, Japan
[3] Peoples Friendship Univ Russia, Dept Math Anal & Theory Funct, Moscow, Russia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2019年 / 13卷 / 02期
基金
日本学术振兴会;
关键词
Orlicz maximal operator; fractional Orlicz maximal operator; weight; commutator; fractional integral operator; NORM INEQUALITIES;
D O I
10.7153/jmi-2019-13-26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions for weight norm inequalities on Lebesgue spaces to hold are given in the scale of Orlicz spaces for the fractional Orlicz maximal operators which generalizes the fractional maximal operators. A similar argument for the Orlicz maximal operators is due to Perez, who generalizes for the Fefferman-Stein inequality. The main result is the Fefferman-Stein inequality for the fractional maximal operators of the Sawyer type and the Hardy-Littlewood-Sobolev type. In this paper, we establish that the L-p-boundedness and the Fefferman-Stein type inequality of Orlicz maximal operator are essentially equivalent to the Saywer type inequality for the fractional Orlicz maximal operators. These inequalities are stronger than the Hardy-Littlewood-Sobolev type inequalities. More generally, we consider several mixed strong type inequalities for the ordinary and generalized fractional Orlicz maximal operators. As an application, we investigate the weight norm inequalities of the commutator [b, I-alpha], where b is an element of BMO(R-n), and I-alpha the fractional integral operator.
引用
收藏
页码:369 / 413
页数:45
相关论文
共 50 条
  • [41] Unbounded weighted conditional type operators on Orlicz spaces
    Estaremi, Y.
    Bamerni, N.
    POSITIVITY, 2022, 26 (05)
  • [42] Unbounded weighted conditional type operators on Orlicz spaces
    Y. Estaremi
    N. Bamerni
    Positivity, 2022, 26
  • [43] WEIGHTED COMPOSITION OPERATORS ON MUSIELAK-ORLICZ SPACES
    Raj, Kuldip
    Sharma, Ajay K.
    Kumar, Anil
    ARS COMBINATORIA, 2012, 107 : 431 - 439
  • [44] Weighted composition operators on Orlicz-Sobolev spaces
    Arora, Subhash C.
    Datt, Gopal
    Verma, Satish
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 83 : 327 - 334
  • [45] Composition operators on weighted Bergman-Orlicz spaces
    Sharma, Ajay K.
    Sharma, S. D.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (02) : 273 - 287
  • [46] The fractional maximal operator and fractional integrals on variable Lp spaces
    Capone, Claudia
    Cruz-Uribe, David
    Fiorenza, Alberto
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 743 - 770
  • [47] WEIGHTED LAMBERT TYPE OPERATORS ON Lp SPACES
    Estaremi, Y.
    Jabbarzadeh, M. R.
    OPERATORS AND MATRICES, 2013, 7 (01): : 101 - 116
  • [48] Weighted generalized shift operators on lp spaces
    Ayatollah Zadeh Shirazi, Fatemah
    Ebrahimifar, Fatemeh
    Rezavand, Reza
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (01) : 1 - 12
  • [49] On a sequence of integral operators on weighted Lp spaces
    Altomare, Francesco
    Milella, Sabina
    ANALYSIS MATHEMATICA, 2008, 34 (04) : 237 - 259
  • [50] WEIGHTED Lp BOUNDEDNESS OF CARLESON TYPE MAXIMAL OPERATORS
    Ding, Yong
    Liu, Honghai
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2739 - 2751