Composition operators on weighted Bergman-Orlicz spaces

被引:10
|
作者
Sharma, Ajay K. [1 ]
Sharma, S. D.
机构
[1] Shri Mata Vaishno Devi Univ, Dept Appl Phys & Math, Jammu 180006, India
[2] Univ Jammu, Dept Math, Jammu 180006, India
关键词
D O I
10.1017/S0004972700039204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, composition operators acting on Bergman-Orlicz spaces A(alpha)(Psi) = {f epsilon H(D) : parallel to f parallel to(Psi)(A alpha) = integral(D) Psi(log vertical bar f(z)vertical bar)dv alpha(z) < infinity} are studied, where Psi is a non-constant, non-decreasing convex function defined on (-infinity, infinity) which satisfies the growth condition lim/(t ->infinity) Psi (t)/t = infinity. In fact, under a mild condition on Psi, we show that every holomorphic-self map theta of D induces a bounded composition operator on A(alpha)(Psi) and C-phi is compact on A(alpha)(Psi) if and only if it is compact on a A(alpha)(2).
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条