Adaptive observer design for nonlinear systems using generalized nonlinear observer canonical form

被引:5
|
作者
Jo, NH [1 ]
Son, YI
机构
[1] Soongsil Univ, Sch Elect Engn, Seoul 156743, South Korea
[2] Myongji Univ, Dept Elect Engn, Yongin 449728, Kyunggido, South Korea
来源
KSME INTERNATIONAL JOURNAL | 2004年 / 18卷 / 07期
关键词
nonlinear system; adaptive observer; nonlinear observer canonical form; generalized nonlinear observer canonical form; strictly positive real;
D O I
10.1007/BF02983289
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we present an adaptive observer for nonlinear systems that include unknown constant parameters and are not necessarily observable. Sufficient conditions are given for a nonlinear system to be transformed by state-space change of coordinates into an adaptive observer canonical form. Once a nonlinear system is transformed into the proposed adaptive observer canonical form, an adaptive observer can be designed under the assumption that a certain system is strictly positive real. An illustrative example is included to show the effectiveness of the proposed method.
引用
收藏
页码:1150 / 1158
页数:9
相关论文
共 50 条
  • [41] Generalized adaptive gain sliding mode observer for uncertain nonlinear systems
    Xiaoxue Zhang
    Huifang Kong
    Zhihong Man
    Nonlinear Dynamics, 2023, 111 : 22237 - 22253
  • [42] Generalized adaptive gain sliding mode observer for uncertain nonlinear systems
    Zhang, Xiaoxue
    Kong, Huifang
    Man, Zhihong
    NONLINEAR DYNAMICS, 2023, 111 (24) : 22237 - 22253
  • [43] Variants of nonlinear normal form observer design
    Schaffner, J
    Zeitz, M
    NEW DIRECTIONS IN NONLINEAR AND OBSERVER DESIGN, 1999, 244 : 161 - 180
  • [44] A block triangular form for nonlinear observer design
    Wang, Yebin
    Lynch, Alan F.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (11) : 1803 - 1808
  • [45] Observer design for nonlinear systems using linear approximations
    Navarro Hernandez, C.
    Banks, S.P.
    Aldeen, M.
    IMA Journal of Mathematical Control and Information, 2003, 20 (03) : 359 - 370
  • [46] Observer design for switching nonlinear systems
    Lendek, Zsofia
    Raica, Paula
    Lauber, Jimmy
    Guerra, Thierry Marie
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2282 - 2287
  • [47] Local observer design for nonlinear systems
    Sundarapandian, V
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (1-2) : 25 - 36
  • [48] Robust Observer Design of Nonlinear Systems
    YUE Dong and LIU Yongqing(Dept.of Automation
    JournalofSystemsScienceandSystemsEngineering, 1996, (01) : 66 - 74
  • [49] Nonlinear observer design for bifurcating systems
    Sundarapandian, V
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (1-2) : 183 - 188
  • [50] Global observer design for nonlinear systems
    Sundarapandian, V
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (1-2) : 45 - 54