Nonlinear observer design for bifurcating systems

被引:0
|
作者
Sundarapandian, V [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
关键词
nonlinear observers; exponential observers; bifurcating systems;
D O I
10.1016/S0895-7177(02)00114-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is a geometric study of the nonlinear observer design for bifurcating systems. First, we obtain necessary and sufficient conditions for local exponential observers for nonlinear bifurcating systems under some stability assumptions. Next, using our characterization of local exponential observers, we derive a construction procedure for exponential observers for the bifurcating systems. As applications of our observer design, we consider codimension one bifurcations such as the pitchfork and Hopf bifurcations, and codimension two bifurcations such as the cusp bifurcation. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 50 条
  • [1] Nonlinear observer design for discrete-time bifurcating systems
    Sundarapandian, V
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (1-2) : 211 - 215
  • [2] Observer design for nonlinear systems
    Besançon, G
    ADVANCED TOPICS IN CONTROL SYSTEMS THEORY: LECTURE NOTES FROM FAP 2005, 2006, 328 : 61 - 89
  • [3] On observer design for nonlinear systems
    Ibrir, S.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2006, 37 (15) : 1097 - 1109
  • [4] Nonlinear Observer Design for Lipschitz Nonlinear Systems
    Song, Bongsob
    Hedrick, J. Karl
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 2578 - 2583
  • [5] Observer design for switching nonlinear systems
    Lendek, Zsofia
    Raica, Paula
    Lauber, Jimmy
    Guerra, Thierry Marie
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2282 - 2287
  • [6] Local observer design for nonlinear systems
    Sundarapandian, V
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (1-2) : 25 - 36
  • [7] Robust Observer Design of Nonlinear Systems
    YUE Dong and LIU Yongqing(Dept.of Automation
    JournalofSystemsScienceandSystemsEngineering, 1996, (01) : 66 - 74
  • [8] Global observer design for nonlinear systems
    Sundarapandian, V
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (1-2) : 45 - 54
  • [9] Observer design for nonlinear oscillatory systems
    Kristiansen, D
    Egeland, O
    NEW DIRECTIONS IN NONLINEAR AND OBSERVER DESIGN, 1999, 244 : 43 - 58
  • [10] OBSERVER DESIGN FOR LIPSCHITZ NONLINEAR SYSTEMS
    Ma, K.
    He, F.
    Yao, Y.
    CONTROL AND INTELLIGENT SYSTEMS, 2009, 37 (02)