Normalization of states for a quantum magnetic circular billiard

被引:1
|
作者
de Prunele, E. [1 ]
机构
[1] Univ Franche Comte, Inst UTINAM, CNRS, UMR 6213, F-25030 Besancon, France
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 04期
关键词
eigenvalues and eigenfunctions; wave functions; SPECTRUM;
D O I
10.1103/PhysRevA.79.044502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An analytical expression is given for the normalization of wave functions of a charge particle inside a circular billiard in presence of an external magnetic field. The physical meaning of this normalizing factor is related to the derivative of the energy eigenvalue with respect to the radius of the billiard. A classical estimate of this factor gives another analytical expression which is in good numerical agreement with the quantum analytical result.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Quantum billiard atom optics
    Rohwedder, B
    EUROPHYSICS LETTERS, 2002, 60 (04): : 505 - 511
  • [42] QUANTUM CHAOS IN THE HYPERBOLA BILLIARD
    SIEBER, M
    STEINER, F
    PHYSICS LETTERS A, 1990, 148 (8-9) : 415 - 420
  • [43] Quantum-classical correspondence for local density of states and eigenfunctions of a chaotic periodic billiard
    Luna-Acosta, GA
    Méndez-Bermúdez, JA
    Izrailev, FM
    PHYSICS LETTERS A, 2000, 274 (5-6) : 192 - 199
  • [44] Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition
    Li, L. L.
    Zarenia, M.
    Xu, W.
    Dong, H. M.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [45] Circular billiard tables, conjugate loci, and a cardioid
    Bishop, RL
    REGULAR & CHAOTIC DYNAMICS, 2003, 8 (01): : 83 - 95
  • [46] Dynamical Properties for a Tunable Circular to Polygonal Billiard
    Diogo Ricardo da Costa
    André Fujita
    Matheus Rolim Sales
    José D. Szezech
    Antonio Marcos Batista
    Brazilian Journal of Physics, 2022, 52
  • [47] Polygonal approaches to the circular billiard: the Lyapunov exponent
    Zheng, ZG
    Hu, G
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (02) : 221 - 228
  • [48] Dynamical Properties for a Tunable Circular to Polygonal Billiard
    da Costa, Diogo Ricardo
    Fujita, Andre
    Sales, Matheus Rolim
    Szezech, Jose D., Jr.
    Batista, Antonio Marcos
    BRAZILIAN JOURNAL OF PHYSICS, 2022, 52 (03)
  • [49] Square billiard with a magnetic flux
    Narevich, R
    Prange, RE
    Zaitsev, O
    PHYSICAL REVIEW E, 2000, 62 (02): : 2046 - 2059
  • [50] Square billiard with a magnetic flux
    Narevich, R.
    Prange, R.E.
    Zaitsev, Oleg
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 2046 - 2059