Square billiard with a magnetic flux

被引:0
|
作者
Narevich, R. [1 ,2 ]
Prange, R.E. [1 ]
Zaitsev, Oleg [1 ]
机构
[1] Department of Physics, University of Maryland, College Park, MD 20742, United States
[2] Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, United States
关键词
Approximation theory - Chaos theory - Eigenvalues and eigenfunctions - Electron energy levels - Magnetic fields - Magnetic flux - Magnetic susceptibility - Magnetism - Perturbation techniques - Resonance - Statistical methods - Wave equations;
D O I
暂无
中图分类号
学科分类号
摘要
A study was carried out, focusing on a two-dimensional charged particle confined to a square billiard in a perpendicular magnetic flux. The two flux configurations considered include a uniform flux and an Aharonov-Bohm flux line. Good approximate solutions were derived and compared to numerical solutions.
引用
收藏
页码:2046 / 2059
相关论文
共 50 条
  • [1] Square billiard with a magnetic flux
    Narevich, R
    Prange, RE
    Zaitsev, O
    PHYSICAL REVIEW E, 2000, 62 (02): : 2046 - 2059
  • [2] Square billiard with an Aharonov-Bohm flux line
    Narevich, R
    Prange, RE
    Zaitsev, O
    PHYSICA E, 2001, 9 (03): : 578 - 582
  • [3] Entanglement and chaos in a square billiard with a magnetic field
    Novaes, M
    de Aguiar, MAM
    PHYSICAL REVIEW E, 2004, 70 (04):
  • [4] Circular quantum billiard with a singular magnetic flux line
    Reimann, S.M.
    Brack, M.
    Magner, A.G.
    Blaschke, J.
    Murthy, M.V.N.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 53 (01):
  • [5] Circular quantum billiard with a singular magnetic flux line
    Reimann, SM
    Brack, M
    Magner, AG
    Blaschke, J
    Murthy, MVN
    PHYSICAL REVIEW A, 1996, 53 (01): : 39 - 48
  • [6] Rotating square billiard
    Borgan, S
    Johnson, RC
    PHYSICS LETTERS A, 1999, 262 (06) : 427 - 433
  • [7] Rotating square billiard
    Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
    Phys Lett Sect A Gen At Solid State Phys, 6 (427-433):
  • [8] Degeneracy moments for the square billiard
    Connors, RD
    Keating, JP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (03): : 555 - 562
  • [9] NONLINEAR DYNAMICS OF THE KICKED SQUARE BILLIARD
    Salomov, U. R.
    Matrasulov, D.
    Iskandarov, N. E.
    COMPLEX PHENOMENA IN NANOSCALE SYSTEMS, 2009, : 197 - 202
  • [10] The Sinai billiard, square torus, and field chaos
    Liboff, RL
    Liu, J
    CHAOS, 2000, 10 (04) : 756 - 759