Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations

被引:48
|
作者
Zhao, Yanmin [1 ,2 ]
Zhang, Yadong [1 ]
Liu, F. [2 ]
Turner, I. [2 ]
Tang, Yifa [3 ]
Anh, V. [2 ]
机构
[1] Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion equation; Finite element method; L1; approximation; Stability Convergence and superconvergence; FINITE-ELEMENT-METHOD; DIFFERENCE SCHEME; ORDER; APPROXIMATION;
D O I
10.1016/j.camwa.2016.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using finite element method in spatial direction and classical L1 approximation in temporal direction, a fully-discrete scheme is established for a class of two-dimensional multi-term time fractional diffusion equations with Caputo fractional derivatives. The stability analysis of the approximate scheme is proposed. The spatial global superconvergence and temporal convergence of order O(h(2) + tau(2-alpha)) for the original variable in H-1-norm is presented by means of properties of bilinear element and interpolation postprocessing technique, where h and tau are the step sizes in space and time, respectively. Finally, several numerical examples are implemented to evaluate the efficiency of the theoretical results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1087 / 1099
页数:13
相关论文
共 50 条
  • [41] ABSTRACT MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS
    Li, C. -G.
    Kostic, M.
    Li, M.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (01): : 51 - 71
  • [42] Space-time finite element adaptive AMG for multi-term time fractional advection diffusion equations
    Yue, Xiaoqiang
    Liu, Menghuan
    Shu, Shi
    Bu, Weiping
    Xu, Yehong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2769 - 2789
  • [43] Uniqueness of orders and parameters in multi-term time-fractional diffusion equations by short-time behavior
    Liu, Yikan
    Yamamoto, Masahiro
    INVERSE PROBLEMS, 2023, 39 (02)
  • [44] Preconditioning techniques of all-at-once systems for multi-term time-fractional diffusion equations
    Gan, Di
    Zhang, Guo-Feng
    Liang, Zhao-Zheng
    NUMERICAL ALGORITHMS, 2024, 96 (04) : 1499 - 1531
  • [45] Galerkin approximation for multi-term time-fractional differential equations
    Arifeen, Shams Ul
    Haq, Sirajul
    Ali, Ihteram
    Aldosary, Saud Fahad
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (07)
  • [46] An algorithm for solving multi-term diffusion-wave equations of fractional order
    Jafari, M. A.
    Aminataei, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1091 - 1097
  • [47] A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction-Diffusion Equations
    Zhao, Jie
    Dong, Shubin
    Fang, Zhichao
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [48] A Novel Accurate Method for Multi-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains
    Hu, Tao
    Huang, Cheng
    Reutskiy, Sergiy
    Lu, Jun
    Lin, Ji
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (02): : 1521 - 1548
  • [49] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Meng Li
    Chengming Huang
    Wanyuan Ming
    Computational and Applied Mathematics, 2018, 37 : 2309 - 2334
  • [50] Stability and convergence of difference schemes for the multi-term time-fractional diffusion equation with generalized memory kernels
    Khibiev, A. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (03): : 582 - 597