Preconditioning techniques of all-at-once systems for multi-term time-fractional diffusion equations

被引:1
|
作者
Gan, Di [1 ]
Zhang, Guo-Feng [1 ]
Liang, Zhao-Zheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion equations; Approximate inverse preconditioner; R-circulant matrix; Fast Fourier transform; Discrete sine transform; NUMERICAL-METHODS; DIFFERENTIAL-EQUATIONS; ITERATION METHOD; REAL;
D O I
10.1007/s11075-023-01675-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider solutions for discrete systems arising from multi-term time-fractional diffusion equations. Using discrete sine transform techniques, we find that all-at-once systems of such equations have a structure similar to that of diagonal-plus-Toeplitz matrices. We establish a generalized circulant approximate inverse preconditioner for the all-at-once systems. Through a detailed analysis of the preconditioned matrices, we show that the spectrum of the obtained preconditioned matrices is clustered around one. We give some numerical examples to demonstrate the effectiveness of the proposed preconditioner.
引用
收藏
页码:1499 / 1531
页数:33
相关论文
共 50 条
  • [1] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [2] A Note on Parallel Preconditioning for the All-at-Once Solution of Riesz Fractional Diffusion Equations
    Gu, Xian-Ming
    Zhao, Yong-Liang
    Zhao, Xi-Le
    Carpentieri, Bruno
    Huang, Yu-Yun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (04): : 893 - 919
  • [3] Recovering the temperature distribution for multi-term time-fractional sideways diffusion equations
    Khieu, Tran Thi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [4] Subordination approach to multi-term time-fractional diffusion-wave equations
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 179 - 192
  • [5] All-at-once method for variable-order time fractional diffusion equations
    Pang, Hong-Kui
    Qin, Hai-Hua
    Sun, Hai-Wei
    NUMERICAL ALGORITHMS, 2022, 90 (01) : 31 - 57
  • [6] A high-order spectral method for the multi-term time-fractional diffusion equations
    Zheng, M.
    Liu, F.
    Anh, V.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4970 - 4985
  • [7] Controllability of multi-term time-fractional differential systems
    Singh, Vikram
    Pandey, Dwijendra N.
    JOURNAL OF CONTROL AND DECISION, 2020, 7 (02) : 109 - 125
  • [8] A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations
    Mahmoud A. Zaky
    Computational and Applied Mathematics, 2018, 37 : 3525 - 3538
  • [9] Numerical methods for the two-dimensional multi-term time-fractional diffusion equations
    Zhao, Linlin
    Liu, Fawang
    Anh, Vo V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2253 - 2268
  • [10] A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations
    Zhou, Jun
    Xu, Da
    Chen, Hongbin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 181 - 193