How Likely Is Simpson's Paradox?

被引:31
|
作者
Pavlides, Marios G. [1 ]
Perlman, Michael D. [2 ]
机构
[1] Frederick Univ Cyprus, CY-1303 Nicosia, Cyprus
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
来源
AMERICAN STATISTICIAN | 2009年 / 63卷 / 03期
关键词
Bayes factor; Bayes test; Dirichlet distribution; Multinomial distribution; Simpson's Paradox; Simpson reversal; SUBDIVISIONS; PROPORTION;
D O I
10.1198/tast.2009.09007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
What proportion of all 2 x 2 x 2 contingency tables exhibit Simpson's Paradox? An exact answer is obtained for large sample sizes and extended to 2 x 2 x l tables by Monte Carlo approximation. Conditional probabilities of the occurrence of Simpson's Paradox are also derived. If the observed cell proportions satisfy a Simpson reversal, the posterior probability that the population parameters satisfy the same reversal is obtained. This Bayesian analysis is applied to the well-known Simpson reversal of the 1995-1997 batting averages of Derek Jeter and David Justice.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 50 条
  • [41] Caustics and steroids: A case of Simpson's Paradox
    Hamiltot, Richard J.
    LoVecchio, Frank
    CLINICAL TOXICOLOGY, 2008, 46 (05) : 487 - 487
  • [42] Truths about Simpson's Paradox: Saving the Paradox from Falsity
    Bandyopadhyay, Prasanta S.
    Raghavan, R. Venkata
    Dcruz, Don Wallace
    Brittan, Gordon, Jr.
    LOGIC AND ITS APPLICATIONS, ICLA 2015, 2015, 8923 : 58 - 73
  • [43] How to Win Without Overtly Cheating: The Inverse Simpson Paradox
    Percus, Ora E.
    Percus, Jerome K.
    MATHEMATICAL INTELLIGENCER, 2010, 32 (04): : 49 - 52
  • [44] How to Win Without Overtly Cheating: The Inverse Simpson Paradox
    Ora E. Percus
    Jerome K. Percus
    The Mathematical Intelligencer, 2010, 32 : 49 - 52
  • [45] Simpson's paradox: how performance measurement can fail even with perfect risk adjustment
    Marang-van de Mheen, Perla J.
    Shojania, Kaveh G.
    BMJ QUALITY & SAFETY, 2014, 23 (09) : 701 - 705
  • [46] LOGIC OF SIMPSON PARADOX
    Malinowski, Jacek
    LOGIC AND LOGICAL PHILOSOPHY, 2005, 14 (02) : 203 - 210
  • [47] Yule-Simpson's paradox in Galactic Archaeology
    Minchev, I.
    Matijevic, G.
    Hogg, D. W.
    Guiglion, G.
    Steinmetz, M.
    Anders, F.
    Chiappini, C.
    Martig, M.
    Queiroz, A.
    Scannapieco, C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (03) : 3946 - 3957
  • [48] Simpson's Paradox in Clinical Research: A Cautionary Tale
    Bonovas, Stefanos
    Piovani, Daniele
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (04)
  • [49] Simpson's paradox: An example from hospital epidemiology
    Reintjes, R
    de Boer, A
    van Pelt, W
    Mintjes-de Groot, J
    EPIDEMIOLOGY, 2000, 11 (01) : 81 - 83
  • [50] Simpson's Paradox in Canadian Police Clearance Rates
    Demers, Simon
    Rossmo, D. Kim
    CANADIAN JOURNAL OF CRIMINOLOGY AND CRIMINAL JUSTICE, 2015, 57 (03) : 424 - 434