How Likely Is Simpson's Paradox?

被引:31
|
作者
Pavlides, Marios G. [1 ]
Perlman, Michael D. [2 ]
机构
[1] Frederick Univ Cyprus, CY-1303 Nicosia, Cyprus
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
来源
AMERICAN STATISTICIAN | 2009年 / 63卷 / 03期
关键词
Bayes factor; Bayes test; Dirichlet distribution; Multinomial distribution; Simpson's Paradox; Simpson reversal; SUBDIVISIONS; PROPORTION;
D O I
10.1198/tast.2009.09007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
What proportion of all 2 x 2 x 2 contingency tables exhibit Simpson's Paradox? An exact answer is obtained for large sample sizes and extended to 2 x 2 x l tables by Monte Carlo approximation. Conditional probabilities of the occurrence of Simpson's Paradox are also derived. If the observed cell proportions satisfy a Simpson reversal, the posterior probability that the population parameters satisfy the same reversal is obtained. This Bayesian analysis is applied to the well-known Simpson reversal of the 1995-1997 batting averages of Derek Jeter and David Justice.
引用
收藏
页码:226 / 233
页数:8
相关论文
共 50 条
  • [31] Simpson's Paradox for Kendall's Rank Coefficient
    Zuyderhoff, Pierre
    Denuit, Michel
    Trufin, Julien
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2025, 27 (02)
  • [32] Beyond Simpson's paradox: A descriptive approach
    Yamaoka, K
    APPLIED STOCHASTIC MODELS AND DATA ANALYSIS, 1996, 12 (04): : 239 - 253
  • [33] Simpson's Paradox in a Synthetic Microbial System
    Chuang, John S.
    Rivoire, Olivier
    Leibler, Stanislas
    SCIENCE, 2009, 323 (5911) : 272 - 275
  • [34] Monotone regrouping, regression, and Simpson's paradox
    Rinott, Y
    Tam, M
    AMERICAN STATISTICIAN, 2003, 57 (02): : 139 - 141
  • [35] Simpson’s Paradox in Natural Resource Evaluation
    Y. Zee Ma
    Mathematical Geosciences, 2009, 41 : 193 - 213
  • [36] Simpson's Paradox in Natural Resource Evaluation
    Ma, Y. Zee
    MATHEMATICAL GEOSCIENCES, 2009, 41 (02) : 193 - 213
  • [37] Experimental investigation of quantum Simpson's paradox
    Li, Yu-Long
    Tang, Jian-Shun
    Wang, Yi-Tao
    Wu, Yu-Chun
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    Yu, Ying
    Li, Mi-Feng
    Zha, Guo-Wei
    Ni, Hai-Qiao
    Niu, Zhi-Chuan
    PHYSICAL REVIEW A, 2013, 88 (01)
  • [38] Simpson's paradox in the integrated discrimination improvement
    Chipman, J.
    Braun, D.
    STATISTICS IN MEDICINE, 2017, 36 (28) : 4468 - 4481
  • [39] Simpson's paradox in meta-analysis
    Hanley, JA
    Thériault, G
    EPIDEMIOLOGY, 2000, 11 (05) : 613 - 613
  • [40] Ignoring a covariate: An example of Simpson's paradox
    Appleton, DR
    French, JM
    Vanderpump, MPJ
    AMERICAN STATISTICIAN, 1996, 50 (04): : 340 - 341