Second Hankel Determinant for the Class of Analytic Functions Defined by New Differential Operator

被引:1
|
作者
Eghbiq, Abdussalam [1 ]
Darus, Maslina [1 ]
机构
[1] Univ Kehangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Selangor De, Malaysia
来源
关键词
D O I
10.1063/1.5028024
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we introduce a general sed derivative operator D-m (lambda, nu, zeta, omega, alpha)f(z): A -> A as follow: D-m (lambda, nu, zeta, omega, alpha)f(z) = z + Sigma(infinity)(k=2) (nu + k - 1)(zeta + lambda)omega(alpha)/nu alpha(k)z(k). New subclass R-m (lambda, nu, zeta, omega, alpha, theta) defined by the general sed derivative operator D-m (lambda, nu, zeta, omega, alpha) is obtained. Sharp bounds for the nonlinear functional vertical bar a(2)a(4) - a(3)(2)vertical bar are found.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A certain class of analytic functions and the growth rate of Hankel determinant
    Ul-Haq, Wasim
    Noor, Khalida Inayat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [32] Second Hankel determinant for a class defined by modified Mittag-Leffler with generalized polylogarithm functions
    Pauzi, M. N. M.
    Darus, M.
    Siregar, S.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2018, 18 (04): : 453 - 459
  • [33] On a Class of Analytic Functions Defined by a Fractional Operator
    Szatmari, Eszter
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (04)
  • [34] On a Class of Analytic Functions Defined by an Integral Operator
    Sahool, Pravati
    Singh, Saumya
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [35] On a Class of Analytic Functions Defined by a Fractional Operator
    Eszter Szatmari
    Mediterranean Journal of Mathematics, 2018, 15
  • [36] Second Hankel Determinant for Certain Subclasses of Bi-starlike Functions Defined by Differential Operators
    Orhan, Halit
    Arikan, Hava
    Caglar, Murat
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (02): : 65 - 83
  • [37] Second Hankel Determinant for Bi-univalent Functions Associated with q-differential Operator
    Shrigan, Mallikarjun G.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (05): : 663 - 671
  • [38] Subclass Of Analytic Functions Defined By A Differential Operator
    Madhavi, B.
    Srinivas, T.
    Thirupathireddy, P.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (ICMSA-2019), 2020, 2246
  • [39] A subordination results for a class of analytic functions defined by q-differential operator
    Frasin, Basem Aref
    Murugusundaramoorthy, Gangadharan
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2020, 19 (01) : 53 - 64
  • [40] Geometric Properties for a New Class of Analytic Functions Defined by a Certain Operator
    Breaz, Daniel
    Murugusundaramoorthy, Gangadharan
    Cotirla, Luminita-Ioana
    SYMMETRY-BASEL, 2022, 14 (12):