Second Hankel Determinant for the Class of Analytic Functions Defined by New Differential Operator

被引:1
|
作者
Eghbiq, Abdussalam [1 ]
Darus, Maslina [1 ]
机构
[1] Univ Kehangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Selangor De, Malaysia
来源
关键词
D O I
10.1063/1.5028024
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we introduce a general sed derivative operator D-m (lambda, nu, zeta, omega, alpha)f(z): A -> A as follow: D-m (lambda, nu, zeta, omega, alpha)f(z) = z + Sigma(infinity)(k=2) (nu + k - 1)(zeta + lambda)omega(alpha)/nu alpha(k)z(k). New subclass R-m (lambda, nu, zeta, omega, alpha, theta) defined by the general sed derivative operator D-m (lambda, nu, zeta, omega, alpha) is obtained. Sharp bounds for the nonlinear functional vertical bar a(2)a(4) - a(3)(2)vertical bar are found.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Estimate on The Second Hankel Determinant for Subclasses of Analytic Functions
    Shyan, Goh Jiun
    Janteng, Aini
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 1017 - 1021
  • [22] Fekete-Szego Problem and Upper Bound of Second Hankel Determinant for a New Class of Analytic Functions
    Bansal, Deepak
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (03): : 443 - 452
  • [23] Upper Bound of Hankel Determinant for a Class of Analytic Functions
    Akyel, Tugba
    FILOMAT, 2021, 35 (11) : 3713 - 3720
  • [24] An upper bound to the second Hankel determinant for a new class of univalent functions
    Shrigan, Mallikarjun G.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (05)
  • [25] A Class of Multivalent Analytic Functions Defined by a New Linear Operator
    Kargar, Rahim
    Bilavi, Abdoljalil
    Abdolahi, Salahaddin
    Maroufi, Salah
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 8 (04): : 326 - 334
  • [26] A New Class of Analytic Functions Defined by Using Salagean Operator
    El-Ashwah, R. M.
    Aouf, M. K.
    Hassan, A. A. M.
    Hassan, A. H.
    INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [27] UPPER BOUND FOR THIRD HANKEL DETERMINANT OF A CLASS OF ANALYTIC FUNCTIONS
    Verma, S.
    Kumar, R.
    Murugusundaramoorthy, G.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (04): : 1472 - 1480
  • [28] HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS RELATED WITH LEMNISCATE OF BERNOULLI
    Sahoo, Ashok Kumar
    Patel, Jagannath
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 6 (02): : 170 - 177
  • [29] A certain class of analytic functions and the growth rate of Hankel determinant
    Wasim Ul-Haq
    Khalida Inayat Noor
    Journal of Inequalities and Applications, 2012
  • [30] Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (02)