PLANAR STANDING WAVEFRONTS IN THE FITZHUGH-NAGUMO EQUATIONS

被引:22
|
作者
Chen, Chao-Nien [1 ]
Kung, Shih-Yin [1 ]
Morita, Yoshihisa [2 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
[2] Ryukoku Univ, Dept Appl Math & Informat, Seta 5202194, Japan
基金
日本学术振兴会;
关键词
FitzHugh-Nagumo equations; standing wavefront; variational method; stability; MULTIDIMENSIONAL STABILITY; MICROPHASE SEPARATION; TRAVELING-WAVES; PULSE SOLUTIONS; DIFFUSION; SYSTEM; EXISTENCE; DYNAMICS; PATTERNS; BEHAVIOR;
D O I
10.1137/130907793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the investigation of standing waves for the FitzHugh-Nagumo equations, a well-known reaction-diffusion model of activator-inhibitor type for exhibiting Turing patterns. Similar to the Allen-Cahn equation, a balanced condition for the potential induced from the reaction terms is imposed in studying the existence of planar standing wavefronts. Furthermore, the diffusion rates of activator and inhibitor must be in an appropriate range to ensure the existence of such waves. For the standing front with a symmetry property, an application of the comparison argument yields a uniqueness result. Moreover, the asymptotic stability of wavefronts up to a phase shift is analyzed.
引用
下载
收藏
页码:657 / 690
页数:34
相关论文
共 50 条
  • [41] A variational approach for standing waves of FitzHugh-Nagumo type systems
    Chen, Chao-Nien
    Tanaka, Kazunaga
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (01) : 109 - 144
  • [42] CONCENTRATION PHENOMENA IN FITZHUGH-NAGUMO EQUATIONS: A MESOSCOPIC APPROACH
    Blaustein, Alain
    Filbet, Francis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) : 367 - 404
  • [43] Preconditioned iterative methods for the convective FitzHugh-Nagumo equations
    Li, Rui-Xia
    Zhang, Guo-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (12) : 2915 - 2924
  • [44] Compensator design for the monodomain equations with the fitzhugh-nagumo model
    Institute for Mathematics and Scientic Computing, Karl-Franzens-Universität, Heinrichstr. 36, Graz
    8010, Austria
    不详
    4040, Austria
    Control Optimisation Calc. Var.,
  • [46] Stochastic FitzHugh-Nagumo equations in a time dependent domain
    Coayla-Teran, Edson A.
    Dias de Magalhaes, Paulo Marcelo
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2007, 15 (01) : 49 - 64
  • [47] Stochastic FitzHugh-Nagumo equations on networks with impulsive noise
    Bonaccorsi, Stefano
    Marinelli, Carlo
    Ziglio, Giacomo
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1362 - 1379
  • [48] SPLITTING SCHEMES FOR FITZHUGH-NAGUMO STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Brehier, Charles-Edouard
    Cohen, David
    Giordano, Giuseppe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (01): : 214 - 244
  • [49] Viscoelastic Fitzhugh-Nagumo models
    Bini, D
    Cherubini, C
    Filippi, S
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [50] Standing Waves Joining with Turing Patterns in FitzHugh-Nagumo Type Systems
    Chen, Chao-Nien
    Ei, Shin-Ichiro
    Lin, Ya-Ping
    Kung, Shih-Yin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 998 - 1015