A variational approach for standing waves of FitzHugh-Nagumo type systems

被引:23
|
作者
Chen, Chao-Nien [1 ]
Tanaka, Kazunaga [2 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
[2] Waseda Univ, Sch Sci & Engn, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
SCALAR FIELD-EQUATIONS; EXISTENCE; NORM;
D O I
10.1016/j.jde.2014.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of radially symmetric solutions of FitzHugh-Nagumo type elliptic systems in R-N (N >= 2): -Delta u=g(u)-v in R-N, -d Delta v+gamma v = u in R-N, (*) (u(x),v(x))-> (0,0) as vertical bar x vertical bar -> infinity. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functional I-gamma (u,v) = 1/2 integral(RN) vertical bar del u vertical bar(2) - d vertical bar del v vertical bar(2) dx - integral(RN)G(u) + gamma/2 v(2) -uv dx, defined on H-r(1)(R-N) x H-r(1)(R-N), to find positive and possibly sign-changing solutions of (*). In particular, we overcome difficulty related to Palais Smale condition via our new scaling argument. When g(xi) = xi(1-xi)(xi-alpha), alpha is an element of (0, 1/2), we improve the existence result of Reinecke Sweers [23]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 144
页数:36
相关论文
共 50 条
  • [1] Standing Waves Joining with Turing Patterns in FitzHugh-Nagumo Type Systems
    Chen, Chao-Nien
    Ei, Shin-Ichiro
    Lin, Ya-Ping
    Kung, Shih-Yin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 998 - 1015
  • [2] Multiple front standing waves in the FitzHugh-Nagumo equations
    Chen, Chao-Nien
    Sere, Eric
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 895 - 925
  • [3] Control of spiral waves in FitzHugh-Nagumo systems
    Gao Jia-Zhen
    Xie Ling-Ling
    Xie Wei-Miao
    Gao Ji-Hua
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [4] Standing waves in the FitzHugh-Nagumo system and a problem in combinatorial geometry
    Wei, Juncheng
    Winter, Matthias
    MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (02) : 359 - 383
  • [5] Standing waves in the FitzHugh-Nagumo system and a problem in combinatorial geometry
    Juncheng Wei
    Matthias Winter
    Mathematische Zeitschrift, 2006, 254 : 359 - 383
  • [6] Standing waves in the FitzHugh-Nagumo model of cardiac electrical activity
    Dauby, PC
    Desaive, T
    Croisier, H
    Kolh, P
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [7] Some recent progress on standing waves of FitzHugh-Nagumo system
    Chen, Chao-Nien
    Tsai, Hung-Jen
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 63 - 75
  • [8] Standing Pulse Solutions to FitzHugh-Nagumo Equations
    Chen, Chao-Nien
    Choi, Y. S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) : 741 - 777
  • [9] PLANAR STANDING WAVEFRONTS IN THE FITZHUGH-NAGUMO EQUATIONS
    Chen, Chao-Nien
    Kung, Shih-Yin
    Morita, Yoshihisa
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 657 - 690
  • [10] TRAVELING WAVES FOR SPATIALLY DISCRETE SYSTEMS OF FITZHUGH-NAGUMO TYPE WITH PERIODIC COEFFICIENTS
    Schouten-Straatman, Willem M.
    Hupkes, Hermen Jan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (04) : 3492 - 3532