A variational approach for standing waves of FitzHugh-Nagumo type systems

被引:23
|
作者
Chen, Chao-Nien [1 ]
Tanaka, Kazunaga [2 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
[2] Waseda Univ, Sch Sci & Engn, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
SCALAR FIELD-EQUATIONS; EXISTENCE; NORM;
D O I
10.1016/j.jde.2014.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of radially symmetric solutions of FitzHugh-Nagumo type elliptic systems in R-N (N >= 2): -Delta u=g(u)-v in R-N, -d Delta v+gamma v = u in R-N, (*) (u(x),v(x))-> (0,0) as vertical bar x vertical bar -> infinity. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functional I-gamma (u,v) = 1/2 integral(RN) vertical bar del u vertical bar(2) - d vertical bar del v vertical bar(2) dx - integral(RN)G(u) + gamma/2 v(2) -uv dx, defined on H-r(1)(R-N) x H-r(1)(R-N), to find positive and possibly sign-changing solutions of (*). In particular, we overcome difficulty related to Palais Smale condition via our new scaling argument. When g(xi) = xi(1-xi)(xi-alpha), alpha is an element of (0, 1/2), we improve the existence result of Reinecke Sweers [23]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 144
页数:36
相关论文
共 50 条
  • [41] Multipeak solutions for an elliptic system of Fitzhugh-Nagumo type
    E.N. Dancer
    Shusen Yan
    Mathematische Annalen, 2006, 335
  • [42] Localization of response functions of spiral waves in the Fitzhugh-Nagumo system
    Biktasheva, I. V.
    Holden, A. V.
    Biktashev, V. N.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (05): : 1547 - 1555
  • [43] On Propagation of Excitation Waves in Moving Media: The FitzHugh-Nagumo Model
    Ermakova, Elena A.
    Shnol, Emmanuil E.
    Panteleev, Mikhail A.
    Butylin, Andrey A.
    Volpert, Vitaly
    Ataullakhanov, Fazoil I.
    PLOS ONE, 2009, 4 (02):
  • [44] Controlled synchronization in two hybrid FitzHugh-Nagumo systems
    Plotnikov, Sergei A.
    Fradkov, Alexander L.
    IFAC PAPERSONLINE, 2016, 49 (14): : 137 - 141
  • [45] Chaotic oscillations in singularly perturbed FitzHugh-Nagumo systems
    Barbosa, Peterson T. C.
    Saa, Alberto
    CHAOS SOLITONS & FRACTALS, 2014, 59 : 28 - 34
  • [46] INTERACTION OF PULSES IN DISSIPATIVE SYSTEMS - FITZHUGH-NAGUMO EQUATIONS
    YAMADA, H
    NOZAKI, K
    PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (05): : 801 - 809
  • [47] The Stabilization of FitzHugh-Nagumo Systems with one Feedback Controller
    Yu Xin
    Li Yongyong
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 417 - +
  • [48] Dynamics of two FitzHugh-Nagumo systems with delayed coupling
    Yuan, GY
    Yang, SP
    Wang, GR
    Chen, SC
    ACTA PHYSICA SINICA, 2005, 54 (04) : 1510 - 1522
  • [49] Viscoelastic Fitzhugh-Nagumo models
    Bini, D
    Cherubini, C
    Filippi, S
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [50] SMALL AMPLITUDE PERIODIC-WAVES FOR THE FITZHUGH-NAGUMO EQUATIONS
    SLEEMAN, BD
    JOURNAL OF MATHEMATICAL BIOLOGY, 1982, 14 (03) : 309 - 325