A SURVEY OF RECENT PROGRESS ON NON-ABELIAN TENSOR SQUARES OF GROUPS

被引:0
|
作者
Blyth, R. D. [1 ]
Fumagalli, F.
Morigi, M. [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
[2] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
来源
关键词
non-abelian tensor square; non-abelian exterior square; FREE NILPOTENT GROUPS; SOLVABLE-GROUPS; FINITE RANK; PRODUCTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss some of the progress that has occurred since the survey article "Nonabelian tensor products of groups: the commutator connection" by L.C. Kappe appeared in the Proceedings of Groups St Andrews 1997 in Bath, with a particular emphasis on non-abelian tensor squares of groups. We survey methods for computing non-abelian tensor squares, results that support such calculations, and recent general structure results.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 50 条
  • [21] Finiteness of homotopy groups related to the non-abelian tensor product
    Raimundo Bastos
    Noraí R. Rocco
    Ewerton R. Vieira
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 2081 - 2091
  • [22] Finiteness of homotopy groups related to the non-abelian tensor product
    Bastos, Raimundo
    Rocco, Norai R.
    Vieira, Ewerton R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) : 2081 - 2091
  • [23] Some structural results on the non-abelian tensor square of groups
    Blyth, Russell D.
    Fumagalli, Francesco
    Morigi, Marta
    JOURNAL OF GROUP THEORY, 2010, 13 (01) : 83 - 94
  • [24] THE NON-ABELIAN TENSOR PRODUCT OF FINITE-GROUPS IS FINITE
    ELLIS, GJ
    JOURNAL OF ALGEBRA, 1987, 111 (01) : 203 - 205
  • [25] Non-abelian tensor square of finite-by-nilpotent groups
    Bastos, Raimundo
    Rocco, Norai R.
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 127 - 133
  • [26] The non-Abelian tensor multiplet
    Gustavsson, Andreas
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [27] The non-Abelian tensor multiplet
    Andreas Gustavsson
    Journal of High Energy Physics, 2018
  • [28] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [29] AN INTRINSIC APPROACH TO THE NON-ABELIAN TENSOR PRODUCT VIA INTERNAL CROSSED SQUARES
    Di Micco, Davide
    Van der Linden, Tim
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 1268 - 1311
  • [30] Non-Abelian tensor square and related constructions of p-groups
    Bastos, R.
    de Melo, E.
    Goncalves, N.
    Nunes, R.
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 481 - 490