AN INTRINSIC APPROACH TO THE NON-ABELIAN TENSOR PRODUCT VIA INTERNAL CROSSED SQUARES

被引:0
|
作者
Di Micco, Davide [1 ,2 ]
Van der Linden, Tim
机构
[1] Univ Milan, Via Saldini 50, I-20133 Milan, Italy
[2] Catholic Univ Louvain, Inst Rech Math & Phys, Chemin Cyclotron 2 Bte L7-01-02, B-1348 Louvain La Neuve, Belgium
来源
关键词
Semi-abelian category; pair of compatible actions; internal action; crossed module; crossed square; commutator; non-abelian tensor product; COMMUTATOR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explain how, in the context of a semi-abelian category, the concept of an internal crossed square may be used to set up an intrinsic approach to the Brown-Loday non-abelian tensor product.
引用
收藏
页码:1268 / 1311
页数:44
相关论文
共 50 条
  • [1] Universal Central Extensions of Internal Crossed Modules via the Non-abelian Tensor Product
    di Micco, Davide
    Van der Linden, Tim
    APPLIED CATEGORICAL STRUCTURES, 2020, 28 (05) : 717 - 748
  • [2] Universal Central Extensions of Internal Crossed Modules via the Non-abelian Tensor Product
    Davide di Micco
    Tim Van der Linden
    Applied Categorical Structures, 2020, 28 : 717 - 748
  • [3] A Non-Abelian Tensor Product of Lie Crossed Modules
    Javan, Arash
    Ravanbod, Hajar
    Salemkar, Ali Reza
    JOURNAL OF LIE THEORY, 2021, 31 (04) : 933 - 956
  • [4] Y The non-abelian tensor product of normal crossed submodules of groups
    Salemkar, Ali Reza
    Taha, Tahereh Fakhr
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2020, 13 (01) : 23 - 44
  • [5] On the Non-abelian Tensor Product of Groups
    Moghaddam, Mohammad Reza R.
    Mirzaei, Fateme
    ALGEBRA COLLOQUIUM, 2011, 18 (03) : 429 - 436
  • [6] On the non-abelian tensor product of Lie algebras
    Salemkar, Ali Reza
    Tavallaee, Hamid
    Mohammadzadeh, Hamid
    Edalatzadeh, Behrouz
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (03): : 333 - 341
  • [7] A non-abelian tensor product of Leibniz algebras
    Gnedbaye, AV
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) : 1149 - +
  • [8] ON NON-ABELIAN TENSOR SQUARES OF LINEAR-GROUPS
    HANNEBAUER, T
    ARCHIV DER MATHEMATIK, 1990, 55 (01) : 30 - 34
  • [9] Infinite metacyclic groups and their non-abelian tensor squares
    Beuerle, JR
    Kappe, LC
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 : 651 - 662
  • [10] On the finiteness of the non-abelian tensor product of groups
    Bastos, Raimundo
    Nakaoka, Irene N.
    Rocco, Norai R.
    JOURNAL OF ALGEBRA, 2025, 664 : 251 - 267