Multivariate Time Series Forecasting with Deep Learning Proceedings in Energy Consumption

被引:2
|
作者
Mellouli, Nedra [1 ]
Akerma, Mahdjouba [2 ]
Minh Hoang [2 ]
Leducq, Denis [2 ]
Delahaye, Anthony [2 ]
机构
[1] Univ Paris 08, LIASD EA4383, IUT Montreuil, Vincennes St Denis, France
[2] Irstea, UR GPAN, Antony, France
关键词
Demand Response; Deep Learning; Time Series Forecasting;
D O I
10.5220/0008168203840391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose to study the dynamic behavior of indoor temperature and energy consumption in a cold room during demand response periods. Demand response is a method that consists of smoothing demand over time, seeking to reduce or even stop consumption during periods of high demand in order to shift it to periods of lower demand. Such a system can therefore be tackled as the study of a time-series, where each behavioral parameter is a time-varying parameter. Different network topologies are considered, as well as existing approaches for solving multi-step ahead prediction problems. The predictive performance of short-term predictors is also examined with regard to prediction horizon. The performance of the predictors are evaluated using measured data from real scale buildings, showing promising results for the development of accurate prediction tools.
引用
收藏
页码:384 / 391
页数:8
相关论文
共 50 条
  • [21] Time Series Representation Learning: A Survey on Deep Learning Techniques for Time Series Forecasting
    Schmieg, Tobias
    Lanquillon, Carsten
    [J]. ARTIFICIAL INTELLIGENCE IN HCI, PT I, AI-HCI 2024, 2024, 14734 : 422 - 435
  • [22] Forecasting multivariate time series
    Athanasopoulos, George
    Vahid, Farshid
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2015, 31 (03) : 680 - 681
  • [23] Dynamic Hypergraph Structure Learning for Multivariate Time Series Forecasting
    Wang, Shun
    Zhang, Yong
    Lin, Xuanqi
    Hu, Yongli
    Huang, Qingming
    Yin, Baocai
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (04) : 556 - 567
  • [24] Hierarchical Joint Graph Learning and Multivariate Time Series Forecasting
    Kim, Juhyeon
    Lee, Hyungeun
    Yu, Seungwon
    Hwang, Ung
    Jung, Wooyeol
    Yoon, Kijung
    [J]. IEEE ACCESS, 2023, 11 : 118386 - 118394
  • [25] Dynamic graph structure learning for multivariate time series forecasting
    Li, Zhuo Lin
    Zhang, Gao Wei
    Yu, Jie
    Xu, Ling Yu
    [J]. PATTERN RECOGNITION, 2023, 138
  • [26] Ensemble Deep Learning for Regression and Time Series Forecasting
    Qiu, Xueheng
    Zhang, Le
    Ren, Ye
    Suganthan, P. N.
    Amaratunga, Gehan
    [J]. 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ENSEMBLE LEARNING (CIEL), 2014, : 21 - 26
  • [27] Time-series forecasting with deep learning: a survey
    Lim, Bryan
    Zohren, Stefan
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [28] A novel time series forecasting model with deep learning
    Shen, Zhipeng
    Zhang, Yuanming
    Lu, Jiawei
    Xu, Jun
    Xiao, Gang
    [J]. NEUROCOMPUTING, 2020, 396 : 302 - 313
  • [29] Time Series Dataset Survey for Forecasting with Deep Learning
    Hahn, Yannik
    Langer, Tristan
    Meyes, Richard
    Meisen, Tobias
    [J]. FORECASTING, 2023, 5 (01): : 315 - 335
  • [30] Efficient Automated Deep Learning for Time Series Forecasting
    Deng, Difan
    Karl, Florian
    Hutter, Frank
    Bischl, Bernd
    Lindauer, Marius
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 664 - 680