Time Series Dataset Survey for Forecasting with Deep Learning

被引:1
|
作者
Hahn, Yannik [1 ]
Langer, Tristan [1 ]
Meyes, Richard [1 ]
Meisen, Tobias [1 ]
机构
[1] Inst Technol & Management Digital Transformat TMDT, Rainer Gruenter Str 21, D-42119 Wuppertal, Germany
来源
FORECASTING | 2023年 / 5卷 / 01期
关键词
time series; forecasting; dataset; deep learning; survey; ATTENTION; MODEL;
D O I
10.3390/forecast5010017
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning models have revolutionized research fields like computer vision and natural language processing by outperforming traditional models in multiple tasks. However, the field of time series analysis, especially time series forecasting, has not seen a similar revolution, despite forecasting being one of the most prominent tasks of predictive data analytics. One crucial problem for time series forecasting is the lack of large, domain-independent benchmark datasets and a competitive research environment, e.g., annual large-scale challenges, that would spur the development of new models, as was the case for CV and NLP. Furthermore, the focus of time series forecasting research is primarily domain-driven, resulting in many highly individual and domain-specific datasets. Consequently, the progress in the entire field is slowed down due to a lack of comparability across models trained on a single benchmark dataset and on a variety of different forecasting challenges. In this paper, we first explore this problem in more detail and derive the need for a comprehensive, domain-unspecific overview of the state-of-the-art of commonly used datasets for prediction tasks. In doing so, we provide an overview of these datasets and improve comparability in time series forecasting by introducing a method to find similar datasets which can be utilized to test a newly developed model. Ultimately, our survey paves the way towards developing a single widely used and accepted benchmark dataset for time series data, built on the various frequently used datasets surveyed in this paper.
引用
收藏
页码:315 / 335
页数:21
相关论文
共 50 条
  • [1] Deep Learning for Time Series Forecasting: A Survey
    Torres, Jose F.
    Hadjout, Dalil
    Sebaa, Abderrazak
    Martinez-Alvarez, Francisco
    Troncoso, Alicia
    [J]. BIG DATA, 2021, 9 (01) : 3 - 21
  • [2] Time-series forecasting with deep learning: a survey
    Lim, Bryan
    Zohren, Stefan
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194):
  • [3] Time Series Representation Learning: A Survey on Deep Learning Techniques for Time Series Forecasting
    Schmieg, Tobias
    Lanquillon, Carsten
    [J]. ARTIFICIAL INTELLIGENCE IN HCI, PT I, AI-HCI 2024, 2024, 14734 : 422 - 435
  • [4] Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
    Benidis, Konstantinos
    Rangapuram, Syama Sundar
    Flunkert, Valentin
    Wang, Yuyang
    Maddix, Danielle
    Turkmen, Caner
    Gasthaus, Jan
    Bohlke-Schneider, Michael
    Salinas, David
    Stella, Lorenzo
    Aubet, Francois-Xavier
    Callot, Laurent
    Januschowski, Tim
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (06)
  • [5] Long sequence time-series forecasting with deep learning: A survey
    Chen, Zonglei
    Ma, Minbo
    Li, Tianrui
    Wang, Hongjun
    Li, Chongshou
    [J]. INFORMATION FUSION, 2023, 97
  • [6] A Survey on Classical and Deep Learning based Intermittent Time Series Forecasting Methods
    Karthikeswaren, R.
    Kayathwal, Kanishka
    Dhama, Gaurav
    Arora, Ankur
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] Deep Time Series Forecasting Models: A Comprehensive Survey
    Liu, Xinhe
    Wang, Wenmin
    [J]. MATHEMATICS, 2024, 12 (10)
  • [8] A novel time series forecasting model with deep learning
    Shen, Zhipeng
    Zhang, Yuanming
    Lu, Jiawei
    Xu, Jun
    Xiao, Gang
    [J]. NEUROCOMPUTING, 2020, 396 : 302 - 313
  • [9] Efficient Automated Deep Learning for Time Series Forecasting
    Deng, Difan
    Karl, Florian
    Hutter, Frank
    Bischl, Bernd
    Lindauer, Marius
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 664 - 680
  • [10] Deep Learning Models for Time Series Forecasting: A Review
    Li, Wenxiang
    Law, K. L. Eddie
    [J]. IEEE ACCESS, 2024, 12 : 92306 - 92327