Differential parallel processing of olfactory information in the honeybee, Apis mellifera L.

被引:106
|
作者
Müller, D
Abel, R
Brandt, R
Zöckler, M
Menzel, R
机构
[1] Free Univ Berlin, Inst Biol Neurobiol, D-14195 Berlin, Germany
[2] Free Univ Berlin, Konrad Zuse Inst Informationstech, D-14195 Berlin, Germany
关键词
olfaction; spatial-temporal coding; projection neurons; intracellular recordings; insect;
D O I
10.1007/s00359-002-0310-1
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Two distinct neuronal pathways connect the first olfactory neuropil, the antennal lobe, with higher integration areas, such as the mushroom bodies, via antennal lobe projection neurons. Intracellular recordings were used to address the question whether neuroanatomical features affect odor-coding properties. We found that neurons in the median antennocerebral tract code odors by latency differences or specific inhibitory phases in combination with excitatory phases, have a more specific activity profile for different odors and convey the information with a delay. The neurons of the lateral antennocerebral tract code odors by spike rate differences, have a broader activity profile for different odors, and convey the information quickly. Thus, rather preliminary information about the olfactory Stimulus first reaches the mushroom bodies and the lateral horn via neurons of the lateral antennocerebral tract and subsequently odor information becomes more specified by activities of neurons of the median antennocerebral tract. We conclude that this neuroanatomical feature is not related to the distinction between different odors, but rather reflects a dual coding of the same odor stimuli by two different neuronal strategies focusing different properties of the same stimulus.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [31] Morphological basis of a conditioned reflex in the honeybee apis mellifera l.
    Shvetsov A.V.
    Zachepilo T.G.
    Neuroscience and Behavioral Physiology, 2014, 44 (2) : 156 - 162
  • [32] Analysis of the genetic structure of honeybee (Apis mellifera L.) populations
    Kaskinova, M. D.
    Il'yasov, R. A.
    Poskryakov, A. V.
    Nikolenko, A. G.
    RUSSIAN JOURNAL OF GENETICS, 2015, 51 (10) : 1033 - 1035
  • [33] Genetic dissection of honeybee (Apis mellifera L.) foraging behavior
    Page, RE
    Fondrk, MK
    Hunt, GJ
    Guzmán-Novoa, E
    Humphries, MA
    Nguyen, K
    Greene, AS
    JOURNAL OF HEREDITY, 2000, 91 (06) : 474 - 479
  • [34] The Morphological Basis of Conditioned Reflex in the Honeybee Apis Mellifera L.
    Shvetsov, A. V.
    Zachepilo, T. G.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2012, 62 (06) : 654 - 663
  • [35] Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L.
    Yamazaki, Yurika
    Kiuchi, Makoto
    Takeuchi, Hideaki
    Kubo, Takeo
    INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2011, 41 (05) : 283 - 293
  • [36] The genetic architecture of sucrose responsiveness in the honeybee (Apis mellifera L.)
    Rueppell, O
    Chandra, SBC
    Pankiw, T
    Fondrk, MK
    Beye, M
    Hunt, G
    Page, RE
    GENETICS, 2006, 172 (01) : 243 - 251
  • [37] Neurotoxicity and mode of action of fluralaner on honeybee Apis mellifera L.
    Sheng, Cheng-Wang
    Huang, Qiu-Tang
    Liu, Gen-Yan
    Ren, Xue-Xiang
    Jiang, Jie
    Jia, Zhong-Qiang
    Han, Zhao-Jun
    Zhao, Chun-Qing
    PEST MANAGEMENT SCIENCE, 2019, 75 (11) : 2901 - 2909
  • [38] Genetic variance of mating frequency in the honeybee (Apis mellifera L.)
    Kraus, FB
    Neumann, P
    Moritz, RFA
    INSECTES SOCIAUX, 2005, 52 (01) : 1 - 5
  • [39] Behavioral development and olfactory learning in the honeybee (Apis mellifera)
    Ray, S
    Ferneyhough, B
    DEVELOPMENTAL PSYCHOBIOLOGY, 1999, 34 (01) : 21 - 27
  • [40] Attraction and repellence of workers by the honeybee queen (Apis mellifera L.)
    Moritz, RFA
    Crewe, RM
    Hepburn, HR
    ETHOLOGY, 2001, 107 (06) : 465 - 477