Differential parallel processing of olfactory information in the honeybee, Apis mellifera L.

被引:106
|
作者
Müller, D
Abel, R
Brandt, R
Zöckler, M
Menzel, R
机构
[1] Free Univ Berlin, Inst Biol Neurobiol, D-14195 Berlin, Germany
[2] Free Univ Berlin, Konrad Zuse Inst Informationstech, D-14195 Berlin, Germany
关键词
olfaction; spatial-temporal coding; projection neurons; intracellular recordings; insect;
D O I
10.1007/s00359-002-0310-1
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Two distinct neuronal pathways connect the first olfactory neuropil, the antennal lobe, with higher integration areas, such as the mushroom bodies, via antennal lobe projection neurons. Intracellular recordings were used to address the question whether neuroanatomical features affect odor-coding properties. We found that neurons in the median antennocerebral tract code odors by latency differences or specific inhibitory phases in combination with excitatory phases, have a more specific activity profile for different odors and convey the information with a delay. The neurons of the lateral antennocerebral tract code odors by spike rate differences, have a broader activity profile for different odors, and convey the information quickly. Thus, rather preliminary information about the olfactory Stimulus first reaches the mushroom bodies and the lateral horn via neurons of the lateral antennocerebral tract and subsequently odor information becomes more specified by activities of neurons of the median antennocerebral tract. We conclude that this neuroanatomical feature is not related to the distinction between different odors, but rather reflects a dual coding of the same odor stimuli by two different neuronal strategies focusing different properties of the same stimulus.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [21] Trophallactic interactions in the adult honeybee (Apis mellifera L.)
    Crailsheim, K
    APIDOLOGIE, 1998, 29 (1-2) : 97 - 112
  • [22] Nestmate recognition for eggs in the honeybee (Apis mellifera L.)
    Christian W. W. Pirk
    Peter Neumann
    Randall Hepburn
    Behavioral Ecology and Sociobiology, 2007, 61 : 1685 - 1693
  • [23] Differential reproductive success among subfamilies in queenless honeybee (Apis mellifera L.) colonies
    Caroline G. Martin
    Benjamin P. Oldroyd
    Madeleine Beekman
    Behavioral Ecology and Sociobiology, 2004, 56 : 42 - 49
  • [24] Differential Protein Expression in Honeybee (Apis mellifera L.) Larvae: Underlying Caste Differentiation
    Li, Jianke
    Wu, Jing
    Rundassa, Desalegn Begna
    Song, Feifei
    Zheng, Aijuan
    Fang, Yu
    PLOS ONE, 2010, 5 (10):
  • [25] Differential reproductive success among subfamilies in queenless honeybee (Apis mellifera L.) colonies
    Martin, CG
    Oldroyd, BP
    Beekman, M
    BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 2004, 56 (01) : 42 - 49
  • [26] Olfactory Detectability of L-Amino Acids in the European Honeybee (Apis mellifera)
    Linander, Nellie
    de Ibarra, Natalie Hempel
    Laska, Matthias
    CHEMICAL SENSES, 2012, 37 (07) : 631 - 638
  • [27] Analysis of the genetic structure of honeybee (Apis mellifera L.) populations
    M. D. Kaskinova
    R. A. Il’yasov
    A. V. Poskryakov
    A. G. Nikolenko
    Russian Journal of Genetics, 2015, 51 : 1033 - 1035
  • [28] A SEX ATTRACTANT ACTING AS AN APHRODISIAC IN HONEYBEE (APIS MELLIFERA L.)
    BUTLER, CG
    PROCEEDINGS OF THE ROYAL ENTOMOLOGICAL SOCIETY OF LONDON SERIES A-GENERAL ENTOMOLOGY, 1967, 42 : 71 - &
  • [29] Genetic variance of mating frequency in the honeybee (Apis mellifera L.)
    F. B. Kraus
    P. Neumann
    R. F. A. Moritz
    Insectes Sociaux, 2005, 52 : 1 - 5
  • [30] Actualities concerning immune system in honeybee (Apis mellifera L.)
    Antonia, Odagiu
    Vlaic, A.
    Marghita, L. Al.
    Dezmirean, D.
    Bulletin of the University of Agricultural Science and Veterinary Medicine, Vol 61, 2005: ANIMAL HUSBANDRY AND BIOTECHNOLOGY, 2005, 61 : 200 - 203