Zero-Hopf bifurcations in 3-dimensional differential systems with no equilibria

被引:5
|
作者
Candido, Murilo R. [1 ]
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Averaging theory; Periodic solutions; Quadratic polynomial differential system; Zero-Hopf bifurcation; PERIODIC-SOLUTIONS; CHAOTIC SYSTEM; ATTRACTORS; ORDER;
D O I
10.1016/j.matcom.2018.03.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recently sixteen 3-dimensional differential systems exhibiting chaotic motion and having no equilibria have been studied, and it has been graphically observed that these systems have a period-doubling cascade of periodic orbits providing a route to chaos. Here using new results on the averaging theory we prove that these systems exhibit, for some values of their parameters different to the ones having chaotic motion, either a zero-Hopf or a Hopf bifurcation, and graphically we observed that the periodic orbit starting in those bifurcations is at the beginning of the mentioned period-doubling cascade. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 76
页数:23
相关论文
共 50 条
  • [21] Periodic Orbits Bifurcating from a Nonisolated Zero-Hopf Equilibrium of Three-Dimensional Differential Systems Revisited
    Candido, Murilo R.
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [22] N-Dimensional Zero-Hopf Bifurcation of Polynomial Differential Systems via Averaging Theory of Second Order
    Kassa, S.
    Llibre, J.
    Makhlouf, A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (02) : 283 - 291
  • [23] N-Dimensional Zero-Hopf Bifurcation of Polynomial Differential Systems via Averaging Theory of Second Order
    S. Kassa
    J. Llibre
    A. Makhlouf
    Journal of Dynamical and Control Systems, 2021, 27 : 283 - 291
  • [24] BISTABILITY, GENERALIZED AND ZERO-HOPF BIFURCATIONS IN A PEST CONTROL MODEL WITH FARMING AWARENESS
    AL Basir, Fahad
    Samanta, Sudip
    Tiwari, Pankaj Kumar
    JOURNAL OF BIOLOGICAL SYSTEMS, 2023, 31 (01) : 115 - 140
  • [25] LIMIT CYCLES BIFURCATING FROM A NON-ISOLATED ZERO-HOPF EQUILIBRIUM OF THREE-DIMENSIONAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Xiao, Dongmei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2047 - 2062
  • [26] On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system
    Jaume Llibre
    Regilene D. S. Oliveira
    Claudia Valls
    Nonlinear Dynamics, 2015, 80 : 353 - 361
  • [27] Integrable zero-Hopf singularities and three-dimensional centres
    Garcia, Isaac A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) : 327 - 340
  • [28] THE THREE-DIMENSIONAL CENTER PROBLEM FOR THE ZERO-HOPF SINGULARITY
    Garcia, Isaac A.
    Valls, Claudia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 2027 - 2046
  • [29] On the Zero-Hopf Bifurcation of the Lotka-Volterra Systems in R3
    Han, Maoan
    Llibre, Jaume
    Tian, Yun
    MATHEMATICS, 2020, 8 (07)
  • [30] Local-Activity and Simultaneous Zero-Hopf Bifurcations Leading to Multistability in a Memristive Circuit
    Messias, Marcelo
    Reinol, Alisson de Carvalho
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (15):