Periodic Orbits Bifurcating from a Nonisolated Zero-Hopf Equilibrium of Three-Dimensional Differential Systems Revisited

被引:1
|
作者
Candido, Murilo R. [1 ]
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
关键词
Averaging theory; periodic solutions; polynomial differential systems; zero-Hopf bifurcation; zero-Hopf equilibrium;
D O I
10.1142/S021812741850058X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the periodic solutions bifurcating from a nonisolated zero-Hopf equilibrium in a polynomial differential system of degree two in R-3. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero-Hopf equilibrium. This new result is applied for studying the periodic solutions of differential systems in R-3 having n-scroll chaotic attractors.
引用
收藏
页数:11
相关论文
共 47 条