Periodic Orbits Bifurcating from a Nonisolated Zero-Hopf Equilibrium of Three-Dimensional Differential Systems Revisited

被引:1
|
作者
Candido, Murilo R. [1 ]
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
关键词
Averaging theory; periodic solutions; polynomial differential systems; zero-Hopf bifurcation; zero-Hopf equilibrium;
D O I
10.1142/S021812741850058X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the periodic solutions bifurcating from a nonisolated zero-Hopf equilibrium in a polynomial differential system of degree two in R-3. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero-Hopf equilibrium. This new result is applied for studying the periodic solutions of differential systems in R-3 having n-scroll chaotic attractors.
引用
收藏
页数:11
相关论文
共 47 条
  • [21] N-Dimensional Zero-Hopf Bifurcation of Polynomial Differential Systems via Averaging Theory of Second Order
    Kassa, S.
    Llibre, J.
    Makhlouf, A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (02) : 283 - 291
  • [22] N-Dimensional Zero-Hopf Bifurcation of Polynomial Differential Systems via Averaging Theory of Second Order
    S. Kassa
    J. Llibre
    A. Makhlouf
    Journal of Dynamical and Control Systems, 2021, 27 : 283 - 291
  • [23] On the periodic orbit bifurcating from a zero Hopf bifurcation in systems with two slow and one fast variables
    Garcia, Isaac A.
    Llibre, Jaume
    Maza, Susanna
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 84 - 90
  • [24] Limit Cycles of a Class of Polynomial Differential Systems Bifurcating from the Periodic Orbits of a Linear Center
    Menaceur, Amor
    Boulaaras, Salah
    Alkhalaf, Salem
    Jain, Shilpi
    SYMMETRY-BASEL, 2020, 12 (08): : 1 - 15
  • [25] Three-dimensional competitive Lotka-Volterra systems with no periodic orbits
    Van den Driessche, P
    Zeeman, ML
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (01) : 227 - 234
  • [26] Asymptotic stabilization with phase of periodic orbits of three-dimensional Hamiltonian systems
    Tudoran, Razvan M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 33 - 41
  • [27] Invariant manifolds of periodic orbits for piecewise linear three-dimensional systems
    Carmona, V
    Freire, E
    Ponce, E
    Torres, F
    IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (01) : 71 - 91
  • [28] PERIODIC ORBITS AND INVARIANT CONES IN THREE-DIMENSIONAL PIECEWISE LINEAR SYSTEMS
    Carmona, Victoriano
    Freire, Emilio
    Fernandez-Garcia, Soledad
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 59 - 72
  • [29] PERIODIC ORBITS FOR A CLASS OF C-1 THREE-DIMENSIONAL SYSTEMS
    Ferragut, Antoni
    Llibre, Jaume
    Teixeira, Marco Antonio
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2007, 56 (01) : 101 - 115