Numerical Hopf bifurcation for a class of delay differential equations

被引:52
|
作者
Wulf, V [1 ]
Ford, NJ [1 ]
机构
[1] Univ Coll Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
关键词
delay differential equations; numerical methods; Hopf bifurcation;
D O I
10.1016/S0377-0427(99)00181-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider discretization of parameter-dependent delay differential equations of the form x'(t) = f(x(t),x(t - tau),lambda), lambda epsilon R. We show that, if the delay differential equation undergoes a Hopf bifurcation, then the discrete scheme undergoes a Hopf bifurcation of the same type. The results of this paper extend the results of our previous analysis relating to the discretization of the delay logistic equation to a wider class of problems. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [41] Equivariant Hopf bifurcation for neutral functional differential equations
    Guo, Shangjiang
    Lamb, Jeroen S. W.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2031 - 2041
  • [42] Degenerate Hopf bifurcation for quasilinear differential algebraic equations
    Tang, Y
    Du, DY
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 331 - 342
  • [43] Generalized Hopf Bifurcation for Neutral Functional Differential Equations
    Guo, Shangjiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (14):
  • [44] Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet
    Aziz, Imran
    Amin, Rohul
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (23-24) : 10286 - 10299
  • [45] Stability and Neimark-Sacker bifurcation of numerical discretization of delay differential equations
    He, Zhimin
    Lai, Xin
    Hou, Aiyu
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 2010 - 2017
  • [46] Numerical bifurcation analysis of delay differential equations arising from physiological modeling
    K. Engelborghs
    V. Lemaire
    J. Bélair
    D. Roose
    Journal of Mathematical Biology, 2001, 42 : 361 - 385
  • [47] Numerical bifurcation analysis of delay differential equations arising from physiological modeling
    Engelborghs, K
    Lemaire, V
    Bélair, J
    Roose, D
    JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (04) : 361 - 385
  • [48] Hopf bifurcation due to delay in the van der Pol equations
    Honda, Katsuya
    Agata, Furniki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (03)
  • [49] Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL
    Engelborghs, K
    Luzyanina, T
    Roose, D
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (01): : 1 - 21
  • [50] Hopf bifurcation of a five-dimensional delay differential system
    Li, Xiaofang
    Qu, Rongning
    Feng, Enmin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) : 79 - 96