Numerical Hopf bifurcation for a class of delay differential equations

被引:52
|
作者
Wulf, V [1 ]
Ford, NJ [1 ]
机构
[1] Univ Coll Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
关键词
delay differential equations; numerical methods; Hopf bifurcation;
D O I
10.1016/S0377-0427(99)00181-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider discretization of parameter-dependent delay differential equations of the form x'(t) = f(x(t),x(t - tau),lambda), lambda epsilon R. We show that, if the delay differential equation undergoes a Hopf bifurcation, then the discrete scheme undergoes a Hopf bifurcation of the same type. The results of this paper extend the results of our previous analysis relating to the discretization of the delay logistic equation to a wider class of problems. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [31] Hopf bifurcation via the Poincar, procedure in delay-differential equations with two delays
    Hbid, M. L.
    Sanchez, E.
    Ouifki, R.
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 193 - 213
  • [32] Hopf bifurcation via the Poincaré procedure in delay-differential equations with two delays
    M. L. Hbid
    E. Sánchez
    R. Ouifki
    Revista Matemática Complutense, 2013, 26 : 193 - 213
  • [33] Attractiveness and Hopf bifurcation for retarded differential equations
    Ouifki, R
    Hbid, ML
    Arino, O
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (02) : 147 - 158
  • [34] Hopf bifurcation of nonlinear differential equations with delays
    Zhang, J
    Zheng, ZX
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS AND COMPUTATIONAL SIMULATIONS, 2000, : 464 - 467
  • [35] Hopf bifurcation for neutral functional differential equations
    Wang, Chuncheng
    Wei, Junjie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 1269 - 1277
  • [36] Hopf bifurcation of time-delay Lienard equations
    Xu, J
    Lu, QS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (05): : 939 - 951
  • [37] Numerical bifurcation analysis of differential equations with state-dependent delay
    Luzyanina, T
    Engelborghs, K
    Roose, D
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (03): : 737 - 753
  • [38] A LOCAL HOPF-BIFURCATION THEOREM FOR A CERTAIN CLASS OF IMPLICIT DIFFERENTIAL-EQUATIONS
    KACZYNSKI, T
    KRAWCEWICZ, W
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (02): : 183 - 189
  • [39] Hopf Bifurcation of a Positive Feedback Delay Differential Equation
    陈玉明
    黄立宏
    Communications in Mathematical Research, 2003, (03) : 213 - 223
  • [40] Resonant hopf-hopf interactions in delay differential equations
    Campbell S.A.
    LeBlanc V.G.
    Journal of Dynamics and Differential Equations, 1998, 10 (2) : 327 - 346