Numerical Hopf bifurcation for a class of delay differential equations

被引:52
|
作者
Wulf, V [1 ]
Ford, NJ [1 ]
机构
[1] Univ Coll Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
关键词
delay differential equations; numerical methods; Hopf bifurcation;
D O I
10.1016/S0377-0427(99)00181-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider discretization of parameter-dependent delay differential equations of the form x'(t) = f(x(t),x(t - tau),lambda), lambda epsilon R. We show that, if the delay differential equation undergoes a Hopf bifurcation, then the discrete scheme undergoes a Hopf bifurcation of the same type. The results of this paper extend the results of our previous analysis relating to the discretization of the delay logistic equation to a wider class of problems. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条
  • [1] Hopf bifurcation in numerical approximation of a class delay differential equations
    Zhang, CR
    Liu, MZ
    Zheng, BB
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) : 335 - 349
  • [2] Numerical Hopf bifurcation of linear multistep methods for a class of delay differential equations
    Liu, M. Z.
    Wang, Qiubao
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) : 462 - 474
  • [3] Hopf bifurcation for a class of fractional differential equations with delay
    Babakhani, Azizollah
    Baleanu, Dumitru
    Khanbabaie, Reza
    NONLINEAR DYNAMICS, 2012, 69 (03) : 721 - 729
  • [4] Hopf bifurcation for a class of fractional differential equations with delay
    Azizollah Babakhani
    Dumitru Baleanu
    Reza Khanbabaie
    Nonlinear Dynamics, 2012, 69 : 721 - 729
  • [5] NUMERICAL HOPF BIFURCATION OF DELAY-DIFFERENTIAL EQUATIONS
    Zhang Chunrui (Dept. of Math.
    Annals of Applied Mathematics, 2006, (03) : 436 - 441
  • [6] Hopf bifurcation in numerical approximation for delay differential equations
    Zhang C.
    Liu M.
    Zheng B.
    Journal of Applied Mathematics and Computing, 2004, 14 (1-2) : 319 - 328
  • [7] Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations
    Wang, Qiubao
    Li, Dongsong
    Liu, M. Z.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3087 - 3099
  • [8] Numerical stability analysis and computation of Hopf bifurcation points for delay differential equations
    Luzyanina, T
    Roose, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) : 379 - 392
  • [9] Pseudospectral Approximation of Hopf Bifurcation for Delay Differential Equations
    de Wolff, B. A. J.
    Scarabel, F.
    Lunel, S. M. Verduyn
    Diekmann, O.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (01): : 333 - 370
  • [10] Hopf Bifurcation for a Class of Partial Differential Equation with Delay
    Azevedo, Katia A. G.
    Ladeira, Luiz A. C.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (03): : 395 - 422