Efficient Monte Carlo-Based Analog Parametric Fault Modelling

被引:0
|
作者
Stratigopoulos, Haralampos-G. [1 ]
Sunter, Stephen [2 ]
机构
[1] UJF, INP, CNRS Grenoble, TIMA Lab, 46 Av Felix Viallet, F-38031 Grenoble, France
[2] Mentor Graph Corp, Ottawa, ON K2K 3C9, Canada
来源
2014 IEEE 32ND VLSI TEST SYMPOSIUM (VTS) | 2014年
关键词
TEST METRICS; CIRCUITS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The accepted approach in industry today to ensure out-going quality in high-volume manufacturing of analog circuits is to measure datasheet specifications. The lack of a comprehensive fault model that is computationally efficient makes the elimination of any tests or the use of lower-cost alternative tests too risky or too time-consuming. Monte Carlo simulations offer a general way to model parametric variations, but inherently focus on normal instead of defective performance. This paper defines a new, general fault model comprising a set of marginally failing circuit instances to evaluate parametric fault coverage of test suites in a way that reduces the number of Monte Carlo simulations by one or more orders of magnitude. As an illustrative example, the technique is applied to six parameters of an RF low-noise amplifier (LNA).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A parallel approach for Monte Carlo-based photon propagation simulation
    Rusu, Ionela
    Pentiuc, Stefan-Gheorghe
    Ungurean, Ioan
    Craciun, Elena-Gina
    2012 5TH ROMANIA TIER 2 FEDERATION GRID, CLOUD & HIGH PERFORMANCE COMPUTING SCIENCE (RO-LCG), 2012, : 78 - 81
  • [42] Monte Carlo-based effective doses for electron beam CT
    Castellano, IA
    Dance, DR
    Evans, PM
    Skinner, CL
    RADIOLOGY, 2002, 225 : 183 - 183
  • [43] Monte Carlo-based filtering for fatigue crack growth estimation
    Cadini, F.
    Zio, E.
    Avram, D.
    PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (03) : 367 - 373
  • [44] Monte Carlo-based data snooping with application to a geodetic network
    Lehmann, Ruediger
    Scheffler, Tobias
    JOURNAL OF APPLIED GEODESY, 2011, 5 (3-4) : 123 - 134
  • [45] Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT
    Sohlberg, A.
    Watabe, H.
    Iida, H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (14): : N277 - N285
  • [46] Multiresolutional Quasi-Monte Carlo-based particle filters
    Zhao, Lingling
    Ma, Peijun
    Su, Xiaohong
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3, 2009, : 433 - 437
  • [47] Monte Carlo-based uncertainty analysis of UV array spectroradiometers
    Cordero, Raul R.
    Seckmeyer, Gunther
    Riechelmann, Stefan
    Damiani, Alessandro
    Labbe, Fernando
    METROLOGIA, 2012, 49 (06) : 745 - 755
  • [48] Monte Carlo-based QA for IMRT of head and neck cancers
    Tang, F.
    Sham, J.
    Ma, C-M
    Li, J-S
    FIRST EUROPEAN WORKSHOP ON MONTE CARLO TREATMENT PLANNING, 2007, 74
  • [49] Monte Carlo-based Adaptive Controller for Building Energy Efficiency
    Ge, Shuang
    Fu, Baochuan
    Wu, Zhengtian
    Wu, Yaqi
    2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017,
  • [50] A Monte Carlo-based model for simulation of digital chest tomosynthesis
    Ullman, Gustaf
    Dance, David R.
    Sandborg, Michael
    Carlsson, Gudrun Alm
    Svalkvist, Angelica
    Bath, Magnus
    RADIATION PROTECTION DOSIMETRY, 2010, 139 (1-3) : 159 - 163