On the counting function of primitive sets of integers

被引:6
|
作者
Ahlswede, R
Khachatrian, LH
Sárközy, A
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1088 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
primitive sets; Besicovitch construction; Sathe-Selberg sieve; normal number of prime factors;
D O I
10.1006/jnth.1999.2427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos has shown that for a primitive set A subset of N Sigma(a is an element of A) 1/(a log a) < const. This implies that A(x) <x/(log log x log log log x) for infinitely many x. We prove that this is best possible apart from a factor (log log log x)(epsilon). (C) 1999 Academic Press
引用
收藏
页码:330 / 344
页数:15
相关论文
共 50 条