On the counting function of primitive sets of integers

被引:6
|
作者
Ahlswede, R
Khachatrian, LH
Sárközy, A
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1088 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
primitive sets; Besicovitch construction; Sathe-Selberg sieve; normal number of prime factors;
D O I
10.1006/jnth.1999.2427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos has shown that for a primitive set A subset of N Sigma(a is an element of A) 1/(a log a) < const. This implies that A(x) <x/(log log x log log log x) for infinitely many x. We prove that this is best possible apart from a factor (log log log x)(epsilon). (C) 1999 Academic Press
引用
收藏
页码:330 / 344
页数:15
相关论文
共 50 条
  • [31] Counting RSA-integers
    Decker, Andreas
    Moree, Pieter
    RESULTS IN MATHEMATICS, 2008, 52 (1-2) : 35 - 39
  • [32] An Algorithm for Counting Smooth Integers
    Ishmukhametov, S.
    Sharifullina, F.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (02) : 128 - 137
  • [33] Counting RSA-Integers
    Andreas Decker
    Pieter Moree
    Results in Mathematics, 2008, 52 : 35 - 39
  • [34] INEQUALITIES FOR NUMBER OF INTEGERS IN SUM OF SETS OF POSITIVE INTEGERS
    WARREN, RH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A54 - A54
  • [36] Realising sets of integers as mapping degree sets
    Neofytidis, Christoforos
    Wang, Shicheng
    Wang, Zhongzi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 1700 - 1717
  • [37] On addition of two sets of integers
    Chen, YG
    ACTA ARITHMETICA, 1997, 80 (01) : 83 - 87
  • [38] Addition of two sets of integers
    Balasubramanian, R
    Prakash, G
    CURRENT SCIENCE, 2003, 85 (08): : 1202 - 1206
  • [39] ON EQUATIONS OVER SETS OF INTEGERS
    Jez, Artur
    Okhotin, Alexander
    27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 477 - 488
  • [40] ACTIONS OF SETS OF INTEGERS ON IRRATIONALS
    BEREND, D
    ACTA ARITHMETICA, 1987, 48 (03) : 275 - 306