On the counting function of primitive sets of integers

被引:6
|
作者
Ahlswede, R
Khachatrian, LH
Sárközy, A
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1088 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
primitive sets; Besicovitch construction; Sathe-Selberg sieve; normal number of prime factors;
D O I
10.1006/jnth.1999.2427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos has shown that for a primitive set A subset of N Sigma(a is an element of A) 1/(a log a) < const. This implies that A(x) <x/(log log x log log log x) for infinitely many x. We prove that this is best possible apart from a factor (log log log x)(epsilon). (C) 1999 Academic Press
引用
收藏
页码:330 / 344
页数:15
相关论文
共 50 条
  • [1] On primitive sets of squarefree integers
    R. Ahlswede
    L. Khachatrian
    András Sárközy
    Periodica Mathematica Hungarica, 2001, 42 (1-2) : 99 - 115
  • [2] The number of maximum primitive sets of integers
    Liu, Hong
    Pach, Peter Pal
    Palincza, Richard
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (05): : 781 - 795
  • [3] Primitive sets with large counting functions
    Martin, Greg
    Pomerance, Carl
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 521 - 530
  • [4] Counting sets of integers, no k of which sum to another
    Calkin, NJ
    Taylor, AC
    JOURNAL OF NUMBER THEORY, 1996, 57 (02) : 323 - 327
  • [5] On a combinatorial method for counting smooth numbers in sets of integers
    Croot, Ernie
    JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 237 - 253
  • [6] BRACKET FUNCTION AND COMPLEMENTARY SETS OF INTEGERS
    FRAENKEL, AS
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (01): : 6 - &
  • [7] On the complexity of finding and counting solution-free sets of integers
    Meeks, Kitty
    Treglown, Andrew
    DISCRETE APPLIED MATHEMATICS, 2018, 243 : 219 - 238
  • [8] DENSE SETS OF INTEGERS WITH A PRESCRIBED REPRESENTATION FUNCTION
    Tang, Min
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (01) : 40 - 43
  • [9] A PROPERTY OF THE COUNTING FUNCTION OF INTEGERS WITH NO LARGE PRIME FACTORS
    HENSLEY, D
    JOURNAL OF NUMBER THEORY, 1986, 22 (01) : 46 - 74
  • [10] On the size of primitive sets in function fields
    Gomez-Colunga, Andres
    Kavaler, Charlotte
    McNew, Nathan
    Zhu, Mirilla
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 64